
A Comparison of the Booch Method
and

Shlaer-Mellor OOA/RD

Stephen J. Mellor

Project Technology, Inc.
7400 N. Oracle Rd., Suite 365

Tucson Arizona 85704
520 544-2881

http://www.projtech.com

2 May 1993

The purpose of this paper is to compare Shlaer and Mellor’s OOA/RD with the Booch Method, as
published in Object-Oriented Design with Applications, Benjamin Cummings Publishing Company,
1991, and extensions to the notation published in two installments of Computer Language Magazine in
1992.

It is assumed that the reader has a broad familiarity with both methods.

1. Comparison Summary

There are three fundamental differences between the Booch and Shlaer-Mellor methods: the underlying
software development processes, levels of abstraction, and approaches to design.

Process: The two methods represent fundamentally different processes. Booch defines four steps, but
none of these are connected to a particular set of models. Instead, the models are built incrementally and
iteratively as the developers go through the steps. Completeness criteria are not defined for the models,
nor is there a way to know how much iteration there will be. Each iteration may cover large parts of the
lifecycle, and require reconstruction of large portions of the model.

Booch describes the process as “round-trip iterative gestalt design.” The intent is to iterate through the
several layers of abstraction until the entire system is understood. At each layer, several models are built.
There are no rules on the order of creation of the models, nor are there rules on how much information
should appear on a given model. There are recommendations for the order of the work (as a way of
getting started), but if problems lead the developer to want to look at a different aspect of the system,
then the developer is encouraged to go ahead and do so. There are no completeness criteria for the
models stated in the method. Information is collected in each model sufficient to drive the next step.
The models are built as an organic whole, and the models are not complete until they are all complete.

This lack of a process with well-defined entry and exit criteria for each step means that on the SEI
maturity model scale, Booch can support only a level 1 to level 2 process.

Shlaer-Mellor is, by contrast, a much more strict method, and we use models in a more formal manner.
The models form a single integrated unit with strict rules about how to put these (predefined) elements
together. Iteration is limited, by design of the method: the method limits iteration to a single domain at a
time. Rules for completion are defined for each model. Models are tightly connected and must be
created in a specific order. The integration rules tend to focus attention on a single model at once,
though other models may be begun if the information is available. For each model, there are rules that
define when the model is complete. The purpose of each model is to capture all the information
explicitly, since that information will be translated into the code.

Version 1.2 – 1 –  1993 by Project Technology, Inc.
All rights reserved.

The Shlaer-Mellor Method can support an SEI maturity level of 3 to 4 because of the emphasis on
process and on entry and exit criteria for the models.

The net effect is that Booch is a much looser method, and Shlaer-Mellor has much more formality and
guidelines about how to build the models.

Levels of Abstraction/Domains: Booch discusses building the design models at several “levels of
abstraction,” where objects in one level are used to construct objects at other levels. As the designer’s
understanding of a problem increases, this leads to discovery of deeper layers of abstraction which are
then incorporated into the model. In contrast, Shlaer-Mellor begins by identifying the domains (distinctly
different subject matters) in the problem, and then building a separate analysis for each domain.

This difference has strong implications for reuse. Complete subject matters can be reused in their
entirety. But if a “level of abstraction” mixes several subject matters, then reuse can be achieved only at
the component level (a class or a set of classes).

In Booch, a system can be broken down into parts and each part can be worked on separately. This can
be viewed as a vertical partitioning of the system in which each vertical partition incorporates several
layers of abstraction. In Shlaer-Mellor, however, the system is first partitioned horizontally (into
domains), then each domain can be partitioned vertically (into subsystems). This two-way partitioning
strongly supports concurrent development.

Design Approaches: The two methods take very different approaches to design. Booch describes the
place of design as follows: “Design can start as soon as we have some (possibly incomplete) formal or
informal models of the problem to be solved.” However, nowhere in the book does he build a separate
model of the problem as an input to the design process, nor does he demonstrate any method to get from
such a model to a design. He lists several structured analysis approaches and object-oriented approaches
to analysis, including Shlaer-Mellor OOA, as potential front-ends to object-oriented design.

Shlaer-Mellor, on the other hand, views design as a translation process. Shlaer-Mellor builds an
implementation-free formal model of the application, and an application-free formal model of the system
architecture. Both models can be formally verified, and the processes of building these models have
formal entry and exit criteria. The application model is then systematically translated according to the
rules of the architecture. This translation process can be automated.

One effect of these differences is that the cost of building a design in Booch (and in other object-oriented
and structured methods) is proportional to the size of the analysis. In Shlaer-Mellor, there is a fixed cost
associated with defining the system architecture and the translation rules, regardless of the size of the
system. While both methods work for both large and small systems, the Shlaer-Mellor design approach
scales up easily to large systems, and to sets of closely-related systems with significant degrees of reuse.

There is a defined approach for moving from analysis to design in Shlaer-Mellor.

2. Philosophy and Goals

Significant philosophical differences between the two methods make a point-by-point direct comparison
of the notations a rather fruitless exercise.

Booch uses models to help visualize, and reason about, important aspects of a system in an ad hoc
manner. The models are generally heavy with “adornments;” the developer is encouraged to annotate the
models, and to add further adornments as desired. Booch’s philosophy does not require completeness,
nor absolute consistency, but instead uses the models as a basis for adding detail until the system is
Version 1.2 – 2 –  1993 by Project Technology, Inc.

All rights reserved.

completed. There is one set of models for the system as a whole, but relatively few rules about how to
integrate the several views into a consistent whole. Booch finds a rich notation the most compact way of
representing the rich set of concepts in the object model.

In contrast, the Shlaer-Mellor approach to design relies on translation of the models, so completeness and
consistency are paramount. The Shlaer-Mellor Method prefers simple models, with minimum orthogonal
constructs. While it is certainly possible to define a notation that has specific notations for certain
common elements of object-oriented designs, a separate notation for every concept over time will lead to
a very complex notation with many components.

The implications of these philosophies, as well as the summary concepts from the previous section can be
summarized in the table below.

Goals of the Methods

Shlaer-Mellor Method Booch Method

Readability Sparse notation Notation heavy with adornments

Consistency of models Many rules given by method Very few rules given by method

Capture of information Capture all information
explicitly

Capture enough information to
drive the next step

Completeness of models Defined by method Not defined

Analysis to design transition Analysis models are
mathematically translated into
design.

Elements of the object model
are incorporated into the logical
models. The physical model is
a repackaging of the logical
model.

In summary, Booch uses notation in the sense of an artist’s rendition, whereas Shlaer-Mellor uses
notation in the sense of a blueprint.

3. Detailed Comparison

3.1. System Partitioning Notations

The following table compares the notations of Shlaer-Mellor and Booch for system partitioning.

Shlaer-Mellor Concept Booch Concept

Domain Not modeled explicitly
(cf. levels of abstraction)

Subsystem Class Category & Subsystem

Project Matrix No concept

Shlaer-Mellor distinguishes between subject matters, and then analyzes each one separately. The
different domains are linked by building mappings between them. Booch also distinguishes between
levels of abstraction, but he does not keep them separate.

Both Booch and Shlaer-Mellor have the concept of dividing the system into manageable units. The class
category is a group of classes that can be understood a as unit (cf. subsystem in OOA). The subsystem in
Booch is a physical packaging of classes.

Version 1.2 – 3 –  1993 by Project Technology, Inc.
All rights reserved.

Booch has no notation for the management structure that corresponds to the Project Matrix.

3.2. Comparison: Analysis Notations

The following table compares Shlaer-Mellor and Booch’s Logical Models for (loosely) analysis.

Shlaer-Mellor Concept Booch Concept

Object Information Models Class and Object Diagrams

Object and Attribute Descriptions Class Templates

Relationship Descriptions No concept

Object Communication Model Object Diagrams

Object Access Model Object Diagrams

State Process Table Operations on a Class Diagram

State Model State Model

Action Data Flow Diagram Operations on a Class Diagram

Process Descriptions Operation Templates

Thread of Control Timing Diagram

Object Information Models vs. Class and Object Diagrams: The intent of the Class Diagram is to
declare the abstractions in the problem, just like the Object Information Model. The relationships on the
Class Diagram come from a predefined set (Part-Of, Is-A) that are strongly related to implementation.
The Object Information Model, on the other hand, defines relationships from the domain at hand: Train
RUNS ON Tracks; Train HAS Doors, etc. The Object Diagram shows visibility and messages between
objects. In Shlaer-Mellor OOA, communications between objects are distinct from relationships between
objects, and are represented on a different Object Communication Model. The Shlaer-Mellor Object
Information Model declares conceptual entities in terms of typical, unspecified instances, so there is only
one model, instead of one for classes and one for objects.

Object and Attribute Descriptions vs. Class Templates: The intent of both models is to define the
meaning of the class. Booch does not define the meaning of the data of the class; the Shlaer-Mellor
model defines both objects and attributes. The class template also defines some implementation
characteristics of the class, such as visibility, concurrency and persistence.

Relationship Descriptions: In Booch, relationships are defined from a set of design relationships such as
Part-Of, Is-A and the like. Booch defines the meaning of these relationship (Part-Of etc.) in the Concepts
section of the book. Shlaer-Mellor abstracts relationships from the application, and does not predefine
the relationships. For example Dog Owner OWNS Dogs, Cat IS INFESTED WITH Fleas.

Object Communication Model vs. Object Diagrams: Booch’s object diagram shows communication
between object instances as messages. Message may be simple, synchronous, balking, timeout
asynchronous. The Shlaer-Mellor OCM shows communication of events between state models. Events
are presumed to be asynchronous. Note that at implementation time, the events may be implemented in
any manner desired by the designer.

Object Access Model vs. Object Diagrams: Booch’s object diagram shows communication between
object instances as messages. Message may be simple, synchronous, balking, timeout asynchronous.
The Shlaer-Mellor OAM shows access from one object to another. Access is presumed to be

Version 1.2 – 4 –  1993 by Project Technology, Inc.
All rights reserved.

synchronous. Note that at implementation time, the accesses may be implemented in any manner desired
by the designer.

State Process Table vs. Operations on a Class Diagram: The State Process Table of Shlaer-Mellor lists
all the operations (processes) in the system, including both where the operation is used and the class in
which the operation will be defined at implementation time. Booch’s class diagram defines the
operations of a class.

State Models: Booch’s book does not fully define the state model, and only describes it briefly. There is
no discussion of communication of events between state models. The Shlaer-Mellor Method relies
heavily on state models to model the dyanmic behavior of each object instance. State machines
communicate with each other by sending events back and forth to synchronize behavior.

Action Data Flow Diagram vs. Operations on a Class Diagram: Booch’s class diagram defines the
operations of a class. Less detail is shown than on the Action Data Flow Diagram (ADFD). The ADFD
of the Shlaer-Mellor Method shows the functions required in each state in detail, including sequence,
conditionality and iteration. There is sufficient information of the ADFD to move directly into code.

Process Descriptions vs. Operation Templates: The operation template is used to describe operations of
classes, including the meaning of the operation, its formal parameters, exceptions and concurrency. The
process descriptions of Shlaer-Mellor describe only the meaning of the process, its inputs and outputs.

Thread of Control vs. Timing Diagram: Booch’s timing diagram shows the transmission of events
between object instances. Shlaer-Mellor’s thread of control diagram does the same except that it also
shows actions within object instances, as well as contention for resources.

3.3. Comparison: Design Notations

It is particularly difficult to provide a detailed comparison in this area because the goals of the methods
are so different.

In Booch, the physical models show the allocation of the logical elements of the models to their physical
locations: Processors, Tasks, Packages etc. In addition, the logical models show the results of a variety
of implementation decisions: What is the inheritance hierarchy? Who calls whom? What are the
interfaces to the operations of classes?

Shlaer-Mellor takes a unique perspective on the depiction of the elements of software that make up a
system. The software architecture, in Shlaer-Mellor, is seen as a completely separate subject-matter that
can be understood independently of any application. The concepts of lists, tasking paradigms, classes
and inheritance, are simply concepts that need to be understood. This means that we could use OOA to
model the software architecture, and define exactly (using OOA) what we mean by each one of these
“design” concepts. This is the same as using OOA to extract and define the concepts defined in Booch’s
Object Model.

Alternatively, it is possible to define a notation specifically for object-oriented designs. This has been
done with the OODLE notation. OODLE is not a fundamental part of Shlaer-Mellor Recursive Design,
but OODLE has notational elements for some important parts of the Object Model. OODLE is
deliberately restricted. It covers classes, their internal design, inheritance, and dependencies between
classes. It does not cover tasking models: As Booch himself observes “Concurrency is orthogonal to
object-oriented design.” This approach was taken to the definition of OODLE to avoid building a
notation for each and every concept of object-oriented architectures.

Version 1.2 – 5 –  1993 by Project Technology, Inc.
All rights reserved.

We have chosen to build a table that shows the correspondence between OODLE and Booch’s notation.
Booch also has notations for visibility that appear on the Object Diagram, and for tasking, packaging, and
generics on the Module Diagram. There are no corresponding notations for these concepts in OODLE.

Shlaer-Mellor OODLE Concept Booch Concept

Class Diagram A class appears on a class diagram

Operations for a class Operations of a class appear on a class diagram

Statically bound operation No notation

Dynamically bound operation No notation

Deferring operation No notation

Deferred operation No notation

Parameters of an operation Operation template for a class.

Internal structure of a class Not shown

Inheritance Structure Class diagram relationships

Dependency Structure Object Diagram messages

class/module Class/class utility (a packaging of modules)

client-server/friend No notation

Note that this comparison does not include the many notations and adornments provided by Booch for
specific elements of object-oriented designs. For a complete list, see Booch’s book and subsequent
articles on the notation in Computer Language Magazine.

3.4. The Process

Booch Process: Booch describes his method as “round-trip iterative gestalt design.” He then defines
four steps to the method:

• Identify the classes and objects at a given level of abstraction

• Identify the semantics of the objects and classes

• Identify the relationships among these classes and objects

• Implement these classes and objects

These four steps are carried out iteratively, and the order of the four steps is not absolute. Each of the
four steps is defined in terms of activities and work products, as follows.

Version 1.2 – 6 –  1993 by Project Technology, Inc.
All rights reserved.

Booch Process:

Step Activities Products

Identify the classes and
objects at a given level of
abstraction

Discover key abstractions List of things

— OR —

Invent important mechanisms Formal specification of classes
and objects with templates

May include any of the
diagrams

Identify the semantics of
these classes and objects

Identify the semantics from
perspective of interfaces

Refinements of the templates

Document the static and
dynamic semantics

Build object diagrams for new
objects

Prototype parts of the design

Identify the relationships
among these classes and
objects

Discover patterns to help
reorganize the objects and
classes

Build in relationships between
classes and objects

Make visibility decisions Module diagrams

Prototypes

Implement these classes
and objects

Decide on representation of the
classes and objects

Finish templates

Allocate classes and objects to
modules and programs to
processors

In reading this table, note that the work products vary in the level of completeness and in the level of
detail. For example, the work product for “Identify the classes and objects at a given level of
abstraction” could be a list of things, or a formal specification of the objects.

Shlaer-Mellor Process: The steps, activities, and products in Shlaer-Mellor are summarized in the
following table. In the general case, there may be several domains that require analysis. Each of the
domains is analyzed separately, then mappings are built between the domains.

Version 1.2 – 7 –  1993 by Project Technology, Inc.
All rights reserved.

Shlaer-Mellor Process:

Step Activities Products

Divide the system into
subject matters

Identify the domains in the
problem.

Domain Chart

Identify the client and server
relationships between the
domains
(the bridges).

Mission statements for the
domains.

Bridge descriptions for the
bridges.

OOA for each domain Identify the objects, attributes
and relationships between
objects in the domain.

Object Information Model with
object, attribute and relationship
descriptions

Define the dynamic behavior for
each object and relationship in
the problem .

State models for each object and
relationship.

Object Communication Model

Define the functions for each
object, and their callers.

Action Data Flow Diagram per
state of the state model.

State Process Table for the
whole model.

Process Descriptions for each
process (if required).

Software Architecture Identify mechanisms of the
architecture.

Define archetypes.

Define rules for mapping from
the application to the
architecture.

OODLE diagrams:
 Class Diagram
 Class Structure Chart

 Inheritance Diagram

 Dependency Diagram

Templates

Summary

There are three fundamental differences between the Booch and Shlaer-Mellor methods: the underlying
software development processes, levels of abstraction, and approaches to design.

Booch uses models to help visualize, and reason about, important aspects of a system in an ad hoc
manner. The models are generally heavy with “adornments;” the developer is encouraged to annotate the
models, and to add further adornments as desired. Booch’s philosophy does not require completeness,
nor absolute consistency, but instead uses the models as a basis for adding detail until the system is
completed. There is one set of models for the system as a whole, but relatively few rules about how to
integrate the several views into a consistent whole. Booch finds a rich notation the most compact way of
representing the rich set of concepts in the object model.

In contrast, the Shlaer-Mellor approach to design relies on translation of the models, so completeness and
consistency are paramount. The Shlaer-Mellor Method prefers simple models, with minimum orthogonal
constructs. While it is certainly possible to define a notation that has specific notations for certain
common elements of object-oriented designs, a separate notation for every concept over time will lead to
a very complex notation with many components. In summary, Booch uses notation in the sense of an
artist’s rendition, whereas Shlaer-Mellor uses notation in the sense of a blueprint.

Version 1.2 – 8 –  1993 by Project Technology, Inc.
All rights reserved.

