Object Action Language™ M anual

Document \Version: 1.4

Object Action Language™ Manual

BridgePoint[is a registered trademark of Project Technology, Inc. and its licensors. Object Action Language is a
trademark of Project Technology, Inc. UML is atrademark of The Object Management Group.

All other products or services mentioned in this document are identified by the trademark, service marks, or products
names as designated by the companies who market these products.

Corporate Headquarters Support
Project Technology, Inc. email: support@projtech.com
7400 North Oracle Road, Suite 365 toll-free: (800) 482-3853
Tucson, AZ 85704-6342 voice: +1 (520) 544-0808
United States fax: +1 (520) 544-2912

web: www.projtech.com/support
toll-free: (800) 845-1489
voice: +1 (520) 544-2881
fax: +1 (520) 544-2912
email: info@projtech.com
web: www.projtech.com

CONTENTS

OVENVIBIV .ttt bbb bbbt et et et et e e e b b e neeae e 1
1.1 Documentation RO Mapccceeeereieeiieiieseesie e e et sree s 1
1.2 Typographical CONVENLIONS..........cccueiieeiiieiie et 1
1.3 Contacting Project TEChNOIOQYccoeiueerirrieiierie et 2
[a8 oo [T § o o PSR 3
2 R . U100 S TSP 3
A = T s T ol O] o= o] £ S 4
2.3 INtended AUAIENCE ..ot 5
2.4 Additional COMVENLIONS.........cciiiriririinerie e s 5
I - 141 o] =T 6
(=T oo (U F= o I U (o (U = PSR 7
3.1 OVErall SITUCTUN....ceeiieieeee ettt s 7
3.2 COMMBNES ...ttt et e e s st e e be e s se e e b e e sae e e beesneeeneesnneenneasnns 7
3.3 NamMeS and KEYWOITS........cccveiereeriireerieseesieesieeee e esaesseesseeseseesseessesneesseensens 7

G A VY gL (S o 7= o SRR 8

Object Action Language Manual

DAt TTEIMIS. ...t n e ne e 9
4.1 DataltemsWithin @n ACHON........ccovrerieiieeere et 9
4.2 MOdeled EIEMENES.......cceiiieieeeee e 10
4.3 LOCa VATaDIES........couviiiiiiesie e e 11
VR ANSS To o F T D= = Bl Y == S 12
45 Variable INtialiZalioN.........ccooiiiiieee e e 13
IS o] o] o 14
CONEIOl SEFUCLUI BS ..ttt b et sre e e 17
5.1 1 CONSITUCT ...ttt st sn e e 17
I o g = o 1 1o o] o S S 19
TG I VA Vo 1 1= 1o o IS PRSR 20
5.4 BIEAK ...ocveueeeeeiesieie ettt ettt ne e 21
5.5 CONUINUE......uiitiiiieiieiieie ettt ettt bbbttt s et e nae e 22
5.6 Nested CoNtrol LOGIC......ccciiiiriiiieiieeiieesieeieeesteeste et e s e sse s sne e sreesneesreesnneens 23
Class ManiPUIBLIONS........ccveiieiesierie e e e eae e es e s e sne e eneesneenes 25
6.1 Crealing INSANCES.......ccouieiieiie ettt nr e s et e snne e 25
6.2 SEleCtiNg INSLANCES........ccceeiieeieeeesieee et nneeneas 26
6.3 WItING AHIDULESceeeeeee e 28
6.4 Writing Mathematically-Dependent Attributes..........ccooeeeieevieveccie e 29
6.5 Reading AtIHDULEScceeiece e 31
6.6 DElEtiNg INSLANCES.......c.cceerieeieeie st ee e sae e 32

Contents

S = LT E 11 35
7.1 Relationship SPeCIfiCalioNS........ccocvieeiieieeriere e 35
7.2 Creating an Instance of a Relationshipccccoccveveiiiciic e, 36
7.3 Deleting an Instance of a RE@ionNShiPcccevceeveeieniere e 38
7.4 Relationship NaVigation.........cccceeieiieiecee e e e 40
BV NS e 43
8.1 ReCEIVING EVENE DELA........ccceeeeieeieeiesie e ree e nae e 43
8.2 EVENT GENEIBLION.eiiiieieieeie ettt sne e sre e 44
8.3 EVENL Pre-CreaiioN.......ccceiiriieiieiieie ettt s 46
8.4 Sending aPre-created EVENLcccoeiieieieese e 47
0] =SS] S 49
0.1 SIMPIE EXPrESSIONS.vicvieieeiesieesieeteesteeeesree e eeesreesseeseesseessessessseenseeseesseenees 49
9.2 CompPOoUNd EXPIrESSIONS.......cccuiiiieiieiieeiteeseeesseesaeesseesseesseesseesseesseessessseens 50
9.3 ArthmEtiC EXPrESSIONS.....cvvcieieeiieeieesie e stee e eee e esse e te e sneesee e sneeneas 52
9.4 BO0O0I€aN EXPIrESSIONS.....ccueeiieiieeieeeiesteeiteseesteesteseesreesesseesseesesseesseesesseesseenes 53
0.5 SHING EXPrESSIONS......cciuiiiiieiiieiieeeiesteesteeseeesseesteesseeeseessessseesressseesseesnseens 55
0.6 WHEI€ EXPIESSIONS.....c.viiveeiieeieseesieeteesteeseestesaesseessesseesseesesseessesssssseessessenssens 55
9.7 Assignment Of Variabl €Sc.coveveiieii i 56
0.8 CONSLANES......eeiieeiieeiieeii ettt et esae e e be e s ae e e be e sne e e neesnneeseesnnaens 57
9.9 Additional Unary OPEratOrsS........ccocueeereerueseeseeieeseesseeseesseessesesssesssesseessesees 58

Object Action Language Manual

10

11

12

Operations, Bridges, and FUNCLIONS..........ccccveveiieiece e 61
10.1 Operation INVOCALION.ccveiieeerieeieseesieesee e eeeseesaesee e esesseesaeeeesreenseeneens 61
10.2 Bridge INVOCALION........cveeiiicieecie ettt ettt eanas 63
10.3 FUNCLION IMVOCELION........eiuieieieiesie ettt 66
10.4 Object Action Language for INVOCALIONScoveeereereesieseeeeseeseeseesseeeens 68
DAt and TiMIE ...ttt ettt b b sre b nne s 71
11.1 External and INternal TIME.......ccoiiiieieieie et 71
LI L L0L S STRTPURTPROPT PSPPSR 73
R RS = T 1 e = N 12 1 SRR 73
12.2 QUENYING @ TIMEN ...eveeieie ettt e et e sae e e neeanes 74
12.3 Manipulating @ TIMENcoveieeeerieeeseeseeeeee e e e e sreeeessee e eeesreenreeneens 75
12,4 CanCeliNg @ TIMENccueieeceee et e et ae e te e e s reesaeeneesreerenneens 76
REFEIBINCES.....oee ettt bbb nneas 77
AL REFEIENCES.ottt bbbt 77
(=Y AT £ 79
B.1 KEYWOITSeeceiieieiecie sttt eee st e e eesteete e e e te e saeesseensesneesaeeneesneensennenns 79
SYNEAX SUMIMAI Y .ttt sttt s saeebe e sseeebeesseeeteesaeeeneesnaeeseens 8l
C.1 Language CONSIIUCES.......ccceeiierieesieesieeseeeseessiesseeesseesseessesssseessesssesssessnsenss 81
C.2 Statement COMPONENTScccueeeiiirisiieesieeerteeesree e sree e s sre e e sreeensaeesnnaeeenes 88
C.3 ProduCtion RUIES..........oiiiiieiieiriee et 89
T L= GRS 95

OVERVIEW

1.1 Documentation Road Map

1.1.1 Object Action Language Manual

The Object Action Language Manual details an action language that realizes the action
semantics specification for UML as of version 1.5. Please check the OM G website for the
latest UML specification.

The Object Action Language described here is fully supported by the BridgePoint
Development Suite.

1.2 Typographical Conventions

The following typographical conventions are used throughout this document. A different font
is used to bring attention to different textual elements:

conmand Denotes a command as it should be typed in, a file
name, or aclass name.

<val ue> Denotes a vaue supplied by the user including
command-line parameters or directory paths.

Sart | Programs Indicates a sequence of menu selections or series of
buttons to be selected under the windowing
environment.

Document Refers to documents outside the current one.

Object Action Language Manual

See “ Section” Refers to a section or subsection in the current
document.

1.3 Contacting Project Technology

The following lines of communication can be used to contact Project Technology:

Phone Fax E-mail

PT Sales +1 (520) 544-2881 +1 (520) 544-2912 sales@projtech.com
(800) 845-1489

PT Support +1 (520) 544-0808 +1 (520) 544-2912 support@projtech.com
(800) 482-3853

You can also visit our web site at wwv. pr oj t ech. com

INTRODUCTION

2.1 Purpose

The purpose of this manual is to serve as a reference and general user’s guide to aid in the
correct specification of action semantics for UML models. Although originally designed for
models used with the BridgePoint Development Suite, the language described herein can be
used to define the action semantics for any UML mode in any tool.

The Object Action Language™ is written to satisfy the following goals:

» Readahility - Modelers must be able to easily understand the OAL for develop-
ment and reviews.

» Derivation - Event generation and data access information is captured for deri-
vation of the Object Collaboration Diagrams and Package Dependency
Diagrams for both asynchronous (event) and synchronous (data access)
communication.

e Simulation - The UML models can be simulated through interpretation of the
actions by using the Model Verifier tool.

» Tranglation - Richness of expression is provided while maintaining a specifica-
tion that can be automatically translated onto atarget architecture.

Object Action Language Manual

2.2 Basic Concepts

The Object Action Language™ (OAL) is used to define the semantics for the processing that
occursin an action. An action can be associated with the following five modeled elements:

states

bridge operations

functions

class and instance-based operations

mathematically-dependent attributes

The Object Action Language provides for five types of action processes:

data access
event generation
test
transformation

bridge and function

It supports these through:

control logic

access to the data described by the class diagram
access to the data supplied by eventsinitiating actions
the ability to generate events

access to timers and to the current time and date

InaUML model, unlike conventiona programming, there is no concept of a"main" function
or routine where execution starts. Rather, the models are executed in the context of a number
of interacting finite state machines, all of which are considered to be executing concurrently.
Any state machine, upon receipt of an event (from another state machine or from outside the
system) may respond by changing state. On entry to the new state, a block of processing (an

Chapter 2
Intended Audience

"action") is performed. This processing can in principle execute at the same time as process-
ing associated with another state machine. (Whether this occurs in practice depends on the
nature of the software and hardware architectures used to implement the system.)

The Object Action Language is used to define the processing executed during the action. The
execution rules are as follows:

» Execution commences at the first statement in the action and proceeds sequen-
tialy through the succeeding lines as directed by any control logic structures.

» Execution of the action terminates when the last statement is compl eted.

These rules aso apply to actions defined for bridge operations, functions, class and instance-
based operations, and mathematical ly-dependent attributes.

2.3 Intended Audience

This manual is written for modelers and software engineers who use a process and set of
modeling tools that support the creation, simulation, and translation of UML models. Specif-
ically, guidance is provided for the correct specification of actions formulated in the syntax
of the Object Action Language.

The following section provides guidance on using this manual to meet these needs.

2.4 Additional Conventions

Although future versions of the most tools will support models created under previous
releases, this manual is annotated with three special symbols to indicate preferred usage in
the light of future development.

© Indicates apreferred construct or recommended use for a given construct.

® Indicates afeature that should be used only in the limited manner described in this man-
ual. If the feature is used for other purposes, it is unlikely to convert properly in future
releases or translate correctly onto some architectures.

® Marksaform or capability that isincluded in this release only for experimental reasons
or for backward compatibility. The capability may not be supported in future releases of
tools.

Object Action Language Manual

2.5 Examples

There are examples presented throughout this manual. Much of the OAL in these examples
was extracted from a complete model of areal-world device (an auto-sampler used for chem-
ical testing). The complete model is available on the Project Technology web site:

www. proj t ech. com prods/ bp/ aut osanp. ht m

Thismodel isintentionally simplistic in nature to make it easy to understand. Its purposeisto
illustrate as many aspects of the OAL constructs as possible. It should, therefore, not be con-
strued an example of good modeling practices as several compromises have been made in the
interest of simplicity.

In many cases the examples from the auto-sampler model are augmented with additional,
contrived examples in an effort to provide further illustrations of the OAL construct in ques-
tion. As with any contrived examples, these sequences of OAL are provided as examples of
the syntax for the language and not as examples of valid modeling techniques for real world
applications.

LANGUAGE STRUCTURE

3.1 Overall Structure

An action consists of a number of statements. Each statement can be either a simple
statement (such as an access to the attributes of a class) or a control logic structure (such as
anif construct).

OAL statements are terminated by a semi-colon except following thei f, for each, and
whi | e control constructs, described later.

3.2 Comments

Comments may be inserted by the use of the// charactersat any point in the line. When this
pair of characters is detected, the remainder of the line (up to the new-line character) is
considered to be acomment and is ignored.

3.3 Names and Keywords
OAL statements are composed of:
» keywords (See "Appendix B: Keywords'.)
 logical and arithmetic operations

 names of modeled elements (classes, attributes, class and external entity
keyletters, relationship numbers and phrases, event labels and meanings, and
supplemental dataitems)

e |ocal variables

Object Action Language Manual

Keywords may be represented in all upper case, al lower case, or with the first character
upper case and al other charactersin lower case.

Namesin OAL statements must conform to the following rules:

1. Names are case sensitive. This includes local variables, keyletters, class
attributes, and event identifiers.

2. Names must not begin with a numeric character [0-9].

3. A relationship phrase ('is owned by’) or event meaning ('turn off pump’)
» may contain any ASCII characters.
» must be enclosed by tick marks.*
» must be contained on asingleline.

4. Class keyletters, event labels, and attribute names may contain only the
characters [a-Z][A-Z][0-9][_#]. Spaces are not permitted.

3.4 White Space
White space (spaces and tabs) may be inserted at any point in an OAL statement other than:
« within aname or keyword,
* between two consecutive colons, or

» between the characters of a comparison operator.

1. Thetick marks may be omitted from an event meaning if it contains no spaces.

DATA ITEMS

4.1 Data Items Within an Action

The OAL expression of an action has access to and can produce certain data items. The
following dataitems are available to be read at the start of and throughout an action:

¢ constants

* values of attributes of classes

» supplemental dataitems carried by the event that initiated the action
» |ocal variables (created by statements within the action)

These data items can be produced during an action:
» |oca variables
« values of attributes of classes

» supplemental dataitemsto be carried by an event generated during the action

Finaly, the instance handle sel f may be used to refer to the currently executing instancein
an instance statechart (but not in a class statechart), to an instance in an instance-based
operation, and to the instance of a mathematically-dependent attribute.

Object Action Language Manual

4.2 Modeled Elements

All dataitems referenced or produced by an action must have a data type. The following data
types are defined for class attributes, supplemental data items of an event, and local

variables.
integer string unique 1D © timer handle
real date instance handle © eventinstance
boolean timestamp instance handle set ® state®

Table4-1: Object Action Language Data Types

a Inthe OOA-96 Report, the current state attribute is entirely under the control of
the architectural domain and is not available to the analyst; as a result, in future
versions this data type will no longer be needed.

The analyst may a so define domain-specific data types based upon these data types.

Datatypes within the OAL are "analysis' datatypes, and reflect only the set of legal valuesa
variable can take on.

4.2.1 Implicit Typing

There are no type declaration statements in the OAL. All data items are implicitly typed by
the value assigned to them on their first use within an action.

10

Chapter 4
Local Variables

4.3 Local Variables

Local variables can be of any of the data types listed in "Assigning Data Types' on page 12.
Two of these types require specia consideration:

instance handle The identification of an instance of a class. The
implementation of this type is entirely dependent on the
architecture; hence, its form is unknown to the user of the
OAL.

instance handleset A set of instance handles.

Because instance handles and instance handle sets are obtained by selection from existing
instances, the following situations can arise: (1) alocal variable of type instance handle may
not contain a valid reference to an instance, and (2) alocal variable of type instance handle
set may refer to an empty set. These situations can be detected by using the supplied unary
set operators.

4.3.1 Notes

Attributes cannot be of type instance handle or instance handle set.

Strictly speaking, alocal variable is not of type instance handle, but rather of type instance
handle for a particular class. Any attempt to use an instance handle for one class in the
context of another is an error.

In any action within an instance statechart, a special instance handle called sel f isaways
available. Sel f isalways defined as a handle to the instance of the class that is executing the
current action. The value of sel f cannot be changed by an action.

The instance handle sel f has no meaning inside of an action for a class-based operation, a
bridge operation, or afunction. Sel f isnot defined for a class statechart.

In any action within an instance-based operation or mathematically-dependent attribute,
sel f isalways available. Sel f is always defined as an instance handle to the instance of a
class against which the operation is being executed, or the instance for which the attribute is
being read. The value of sel f cannot be changed by an action.

11

Object Action Language Manual

4.4 Assigning Data Types

The data type names used in this manual have been chosen for readability. The table lists the
correspondences between the data type names used here and in BridgePoint Model Builder.

in this manual in Model Builder
integer integer

real real

boolean boolean

string string

date date

timestamp timestamp

unique ID unique ID

state state<State Model>
timer handle inst_ref<Timer>
instance handle inst_ref<Object>
instance handle set inst_ref set<Object>
event instance inst<event>

Table4-2: Names of datatypes used in this manual and their corresponding names used in the
BridgePoint Model Builder.

12

Chapter 4
Variable Initialization

4.5 Variable Initialization

Some situations arise where a variable may possibly be declared without being assigned a
value. An obvious situation where this occursis when an instance of a class with attributesis
created. Though the attributes should not be accessed before they are assigned, there is
nothing preventing the user from attempting to do so.

For the purposes of the Model Verifier, unassigned variables are considered UNDEFINED.
The user should not intentionally read the data from UNDEFINED variables.

For the purposes of the trandated code, the value of unassigned variables lies entirely in the
realm of the software architecture defined by the model compiler. Even so, use of an
unassigned variable as aread value or in an expression should be avoided.

4.5.1 Examples

Il Reading an uninitialized attribute
create object instance d of DOG // Attributes of d are not initialized
dog name = d.name; // Error! Cannot read uninitialized val ue

/1 Using an uninitialized instance reference
select many f_set frominstances of fish; // Select an enpty instance set
for each f in f_set
Il statenent bl ock
end for;
/1 Instance reference f is available in this scope
{1 and may be uninitialized if f_set was enpty.
fish type = f.type; // Warning! f may be uninitialized.

13

Object Action Language Manual

4.6 Scoping

The scope of avariable is defined as the block of code in which the variable may be accessed.
A block of code can be the entire OAL for the given action, or it may be a <st at enent s>
block within a control logic structure.

Each control logic structure contains at least one new scope. All variables that were
accessible in the scope containing the structure are also accessible in the block or blocks
contained by the structure, essentially causing the contained scopes to inherit variables from
the parent scope. Any variables declared within a given control logic block fall out of scope
when execution exits the block.

Control logic structures may contain multiple scopes, either by repeated nesting of new
structures or by using theel i f or el se constructsinani f structure. When nesting of control
logic is used, each new structure defines a new scope. In an if statement, each el i f or el se
structure contained within thei f block defines a new scope, and each new scope inherits the
scope of the block containing thei f statement.

4.6.1 Notes

14

A local variableisimplicitly declared at the moment it is assigned, with a scope limited to the
current block.

Local variables have a maximum scope of the entire OAL for the current action.

In the f or statement, the local variable declared by <i nst ance handl e> has the same scope
asthe block containing thef or statement.

The wher e clause has a special variable, sel ect ed, that has scope limited to the <wher e
expressi on>.

The scope of sel f for an instance’s action, operation, or attribute, is the entire OAL for the
current action.

Chapter 4
Scoping

4.6.2 Example

/1 begin action
/| scopel - global scope for this action. Variables declared here
Il are accessible anywhere in this action
delta = self.destination - self.current_position
if (delta == 0)
/| scope2 - Variables declared here are only accessible
[l withinif statenent.
spin_spot = CARPIQ :carousel _spin(car_id:self.carousel |ID);
end if; // Al variables declared in scope2 are not accessible
Il after the end if.
select many rows frominstances of RON
for each rowin rows
/| scope3 - Variables declared here are only accessible within
Il for each statenent.
st = row. sanpling_tine;
end for; // Al variables declared in scope3 are not accessible after
Il the end for.
/1 rowis available in the scope containing the for each statenent
/1 (scopel).

if (delta <= 2)
Il scope4 - Variables declared here are accessible within this
Il if block and in scope4.l and scoped. 2.
if (CARPIQ :angle(car_id:self.carousel 1D == 30)
/| scoped4.l - Variables declared here are only accessible
[l within this if block.
end if;
if (CARPIQ :angle(car_id:self.carousel 1D == 60)
Il scope4.2 - Variables declared here are only accessible within
[l this if block
end if;
end if;
Il end action

15

Object Action Language Manual

16

CONTROL STRUCTURES

If Construct

5.1.1 Syntax

Il Note that there is no semi-colon follow ng the
Il "if <bool ean expression>"
i f <bool ean expression>
<statements> // Executed if <bool ean expression> is TRUE
end if;

i f (<bool ean expression>)

<statements>// Executed if above bool ean expression eval uates to TRUE
elif (<bool ean expression>)

<statements> // Executed if above bool ean expression eval uates to TRUE

/1 and previous bool ean expression is FALSE

el se

<statements>// Executed if both bool ean expressions eval uate to FALSE
end if;

<bool ean expressi on> isan expression evaluating to TRUE or FALSE.

5.1.2 Notes

Thei f construct may contain asmany el i f clauses as desired.

Only one el se clause may be used, and it must appear at the end of thei f construct.

17

Object Action Language Manual

5.1.3 Example

18

The following example showsanif/elif/el se construct:

Il Assign x with a different nunber for each nane.

if (name == "John")
x = 1;
elif (name == "Bill")
X = 2;
elif (name == "M chael ")
X =3
el se
[/ 1f not a known nanme, assign x to 4.
X = 4,
end if;

This example shows nested i f constructs:

Il Carousel: Going
self.destination = rcvd_evt. destination;
delta = self.destination - self.current_position;
if (delta==0)
generate Q:there to self;
el se
sel ect any probe frominstances of SP
where (selected.current_position == "down");
if (not_enpty probe)
generate Q:there to self;
el se
spin_spot = CARPI QO : carousel spin(

car_id:self.carousel ID, destination:delta);

end if;
end if;

Chapter 5
For Each Loop

5.2 For Each Loop

Thefor each loop alowsfor the iteration over a set of instance handlesin an instance handle
Set.

5.2.1 Syntax

for each <instance handl e> in <instance handle set> // Note no sem -col on
<st at ement s>
end for;

<i nstance handl e>isalocal variable referring to a single instance.

<instance handl e set>isalocal variable referring to a set of instance handles.

5.2.2 Notes

The statements in the f or each construct are executed once against each instance in
<instance handl e set>.

The order in which the particular instances are processed is undefined.

© Because the statements in the f or each construct can, in principle, be executed in parallel
(as when instances are dispersed over multiple processors), the concept of aloop counter is
undefined. Consequently, the analyst should not attempt to defeat this restriction.

5.2.3 Example

/I Cis the keyletter for the Child object.
[/ children is an inplicitly typed variable of <instance handle set> of C
sel ect many children frominstances of C
for each child in children
generate CL.'time for bed () to child,;
end for;

19

Object Action Language Manual

5.3 While Loop

The whi | e construct is used to sequentially execute the code it contains for as long as the
condition is evaluated as TRUE.

5.3.1 Syntax

whil e (<bool ean expression>) // Note no semi-colon
<stat enent s>
end while;
<bool ean expressi on> is an expression evaluating to TRUE or FALSE

<st at ement s> are zero or more OAL statements.

5.3.2 Note

When the whi | e loop is executed, the statements in the whi | e construct are executed
consecutively as long asthe <bool ean expr essi on> evaluates to TRUE.

5.3.3 Example

/] Create 20 doors with IDs 1-20

i =1

while (i <= 20)
create object instance d of DOOR;
d.ID=1i;
=i+ 1

end whil e;

20

Chapter 5
Break

5.4 Break

The break statement allows the early termination of both f or each and whi | e loops. This
can have some significant performance implications in the case of large loops that need not
step through the entire iteration.

5.4.1 Note

The br eak statement only applies to the current f or each or whi | e loop containing it. To
break out of nested loops, the br eak must be repeated for each loop construct the user wishes
to exit.

5.4.2 Example

/| Create and relate a B to every A while CTL says to keep
/1 creating.
while (CTL::create())
breakout = FALSE;
for each a in aset
[/ 1f this a has nane equal to "Jeff", break out of
/1 for each |oop.

if (a.name == "Jeff")
breakout = TRUE;
break;

end if;

/| Create and relate a newb to the given a.
create object instance b of B
relate b to a across Ri;
end for;
I 1f "Jeff" was found, break out of while |oop also.
i f (breakout)
break;
end if;
end while;

21

Object Action Language Manual

5.5 Continue

Thecont i nue statement causes the next iteration of the enclosing f or each or whi | e loop to
begin, avoiding execution of the loop’s remaining code.

5.5.1 Note

Thecont i nue statement only applies to the current loop containing it.

5.5.2 Example

Il Create and relate a B to each A except for As with ID of 13.
for each a in aset

/I If a.lDis 13, don't create and relate a Bto it and

/1 continue to the next.

if (a.ID == 13)

conti nue;

end if;

create object instance b of B

relate b to a across Ri;
end for;

22

Chapter 5
Nested Control Logic

5.6 Nested Control Logic
Control logic may be nested to any depth.

5.6.1 Example

/] Send a '"tine for bed event to all children 5 and under
select many children frominstances of C,
for each child in children
if (child.age <= 5)
while (child. awake)
generate CL:"tine for bed () to child;
if (not lights.out)
generate C2:'turn off lights” () to child;
end if;
end while;
end if;
end for;

23

Object Action Language Manual

24

CLASS MANIPULATIONS

6.1 Creating Instances

Creation of an instance of aclassis achieved by use of the cr eat e statement.

6.1.1 Syntax

create object instance <instance handl e> of <keyletter>;
create object instance of <keyletter>;

<keyl et t er > isthe keyletter of a classin the model.

6.1.2 Notes

The <i nst ance handl e> returned is the handle of the newly created instance of class
<keyl et t er>. The handle can be used only to refer to an instance of class <keyl et t er>.

The<instance handl e>inthecr eat e statement cannot besel f .

The value of all identifying attributes must be set by the analyst before completion of the
action in which an instance is created. Note that identifying attributes of type unique ID
cannot be assigned values, as they areinitialized by the system.

© All unconditional relationships that involve the newly created instance should be satisfied
before completing the action in which the instance is created. This can be done either by
directly relating the associated instance or by generating an event that will cause the newly
created instance to be properly related.

25

Object Action Language Manual

6.1.3 Examples

/1 Create instances of autosanmpler classes
create object instance car of C
create object instance row of ROW

create object instance of SP; // no instance handl e needed

6.2 Selecting Instances

The sel ect statement can be used to assign an instance or set of instances to either an
instance handle or a instance handle set respectively. An optional wher e clause can be used
at the end of the sel ect statement to limit the selection. Within the wher e clause, the
sel ect ed instance handle refers to each of the instances in the entire set defined by
<keyl etter>. Theinstance handle sel ect ed is meant to be used as an instance handle in a
boolean comparison to form the wher e expression. The instance or set of instances returned
match the criteria of the wher e expression, and may be empty.

6.2.1 Syntax

26

sel ect any <instance handl e> frominstances of <keyletter>;

sel ect many <instance handl e set> frominstances of <keyletter>;

sel ect any <instance handle> frominstances of <keyletter> where <where
expressi on>;

select many <instance handl e set> frominstances of <keyletter> where
<where expressi on>;

<instance handl e>isthe handle for an instance of the class specified by <keyl et t er >.

<i nstance handl e set > isaset of handlesfor all selected instances of the class specified by
<keyl etter>.

<where expressi on> isatype of boolean expression using sel ect ed keyword.

Chapter 6
Selecting Instances

6.2.2 Notes

If the optional wher e clause is used, the returned instance or set of instances meet the criteria
of thewher e expression. Thisimplies that the instance handle may be empty, or the instance
handle set may be empty if no instance fulfills the criteria.

If thesel ect any formis used, an arbitrary instance will be obtained from the selected set.

If thesel ect many form is used then the entire set of instances will be obtained.

If the sel ect any ... where form is used, an arbitrary instance that fulfills the <wher e
expressi on> will be obtained.

If the sel ect many ... where form is used then the set of instances that fulfill the <where
expressi on> will be obtained.

Theinstance handle sel ect ed isvalid only within <where expressi on>.

6.2.3 Example

Il Select an arbitrary instance.
select any dp_one frominstances of DP,

/1 Select all instances.
select many dp_set frominstances of DP,

Il Select an instance of DP whose available attribute is TRUE
select any dp_avail frominstances of DP where sel ected. available == TRUE;

/1 Select a set of instances from DP whose available attribute i s FALSE
select many dp_unavail _set frominstances of DP
wher e sel ected. avai | abl e == FALSE;

Making selections across relationships is describe in "Relationship Navigation" on page 40.

27

Object Action Language Manual

6.3 Writing Attributes

Attributes of instances may be set to specified values by use of the assi gn statement.

6.3.1 Syntax

[assign] <instance handle> <attribute> = <expression>;
<i nstance handl e> isahandle to an instance of aclass.
<attribut e> isthe name of an attribute of the class.
<expr essi on> is either aboolean, string, or arithmetic expression.

The assign statement takes the value in <expressi on> and assigns it to the attribute
<attribut e> for the instance specified by <i nst ance handl e>.

Theassi gn keyword is optional.

6.3.2 Notes

28

The <expr essi on> must evaluate to the data type of <attribut e>, unless<attribute>is
either areal or an integer, in which case <expr essi on> can be either areal or integer value.

A value cannot be assigned to areferential attribute. Relationships must be maintained via
therel at e and unrel at e constructs.

A value cannot be assigned to an attribute of type unique ID, as such an attribute isinitialized
by the system when the instance is created.

Mathematically-dependent attributes cannot be written to, only read. The value of a
mathematically-dependent attribute must be set within the action of the attribute. See
"Writing M athematically-Dependent Attributes' on page 29.

Chapter 6
Writing Mathematically-Dependent Attributes

6.3.3 Example |

/1 Account is a class with attributes branch, account_nunber,
// and bal ance. Assume new account, this _branch, and initial _deposit
Il are event supplenental data itens.

Il First, create a new instance.
create object instance nmy_account of ACCT;

/1 Now set attribute values using the returned instance handl e.
my_account. branch = rcvd_evt.this_branch;

my_account . account _nunber = rcvd_evt. new account;

my_account. bal ance = rcvd_evt.initial _deposit;

6.3.4 Example Il

/| Create and initialize a rowin the autosanpler carousel.
create object instance row of ROW

relate rowto car across Ri;

row. radius = 10;

row. current _sanpling position = 0;

r ow. maxi mum sanpl i ng_positions = 5;

row. sanpling_time = 5000;

row. needs_probe = fal se;

6.4 Writing Mathematically-Dependent
Attributes

Mathematically-dependent attributes are attributes that have their value derived from other
modeled elements. It is not possible to directly write to a mathematically-dependent attribute
as described above. Instead, OAL must be used to specify the derived value. When the
attribute is read in an action, the value of the attribute is calculated from the OAL specified in
the action for the mathematically-dependent attribute.

29

Object Action Language Manual

6.4.1 Syntax

From within the action of a mathematically-dependent attribute:
[assign] self.<attribute> = <expression>;

<attribut e> isthe name of the mathematically-dependent attribute.

<expr essi on> is either aboolean, string, or arithmetic expression.

The assign statement takes the value in <expr essi on> and assigns it to the attribute
<attribut e> for the instance specified by sel f .

Theassi gn keyword is optional.

6.4.2 Notes

30

The <expr essi on> must evaluate to the data type of <attribut e>, unless<attribute>is
either areal or an integer, in which case <expr essi on> can be either area or integer value.

A value cannot be assigned to areferential attribute. Relationships must be maintained via
therel at e and unr el at e constructs.

A value cannot be assigned to an attribute of type unique ID, as such an attribute isinitialized
by the system when the instance is created.

The action parsing routine for attributes checks to see if the variable sel f is written
somewhere in the state action, and if not, a parse error is reported.

Care should be taken to make sure that al paths inside an action actually set the attribute.

The paramand r et ur n keywords are not supported in the action of the attribute.

Chapter 6
Reading Attributes

6.4.3 Example

/1 Mathematical | y-dependent attribute (MDA) action
self.volunme = self.length*sel f.wi dth*sel f. hei ght;

Il Action reading the MDA vol ume
v = cube. vol ung;

6.5 Reading Attributes

A class attribute may be referenced in an expression using the form:

6.5.1 Syntax

<instance handl e>. <attribute>
<i nstance handl e>isahandleto an instance of aclass.

<attri but e> isthe name of an attribute of the class.

6.5.2 Notes

You may read the value of any attribute, including referential attributes.

<instance handl e>. <attribute> isan expression and can be used in any OAL construct
specifying an expression.

© When you wish to obtain an associated instance, use the relationship navigation constructs

rather than reading (a succession of) referential attributes. This ensures that code generators
can detect the purpose of the read and therefore produce accurate and effective translation.

31

Object Action Language Manual

6.5.3 Example

/| Create new instance and get handl e.

Create object instance nyrobot of R,

Il Use the instance handle to read attribute val ues.
myx = nyrobot.x_position;

myy = nyrobot.y position;

[/ Position the row for sanpling.
select one car related by self->CRl];
sel f.next _sanpling position = self.current_sanpling_position + 1;
next =
ROW : convert dest(radius:self.radius,
next _sanpling _position:self.next_sanpling_position);
generate Cl:go(destination:next) to car;

6.6 Deleting Instances

6.6.1 Syntax

del ete object instance <instance handl e>;

6.6.2 Notes

32

This statement del etes the instance specified by <i nst ance handl e>.

When an instance of aclassis deleted, it isno longer available to the domain where the class
is defined. However, sophisticated software architectures can be imagined which support the

notion that the instance is kept for logging purposes although the defining domain cannot see
it.

Chapter 6
Deleting Instances

© Depending on the architecture, deleting an instance may or may not be sufficient to
specify deletion of any attached relationships. Because certain architectures may fail if such
dangling relationships are used at run time, we recommend that the analyst explicitly delete
relationships before del eting the participating class instances.

6.6.3 Example

Il Delete every instance of DG with name equal to Fido.
select many dogs frominstances of DG where (selected.name == "Fido");
for each dog in dogs
sel ect one owner related by dog->OM[R23];
unrel ate dog from owner;
del ete object instance dog;
end for;

33

Object Action Language Manual

34

7

RELATIONSHIPS

7.1 Relationship Specifications

A relationship specification identifies exactly which relationship is required to be created,
navigated, or deleted.

7.1.1 Syntax

R<nunber >
r <nunber >
R<nunber >. <rel ationshi p phrase>
r<nunber >. <rel ati onshi p phrase>
<nunber > the number of the relationship as shown on the class diagram.(e.g., R1).

<rel ationship phrase> isthe text that appears at the destination end of the relationship,
enclosed in tick marks and contained on asingleline.

7.1.2 Note

Either Ror r may be used when referring to a relationship.

35

Object Action Language Manual

7.1.3 Examples

rs

R10.’ owns’

r10."is owned by’
R22." uses’

RL."Is rotated by’
RL.’ Contains’
R2."|I's assigned to’

7.2 Creating an Instance of a Relationship

7.2.1 Syntax

rel ate <source instance handl e> to <destination instance handl e> across
<rel ationship specification>;

relate <source instance handl e> to <destination instance handl e> across
<rel ationship specification> using <associative instance handl e>;

<source instance handl e> isthe handle of thefirst classinstance to be related.
<destination instance handl e>isthe handle of the second class instance to be rel ated.

<rel ationshi p speci ficati on> isthe specification of the relationship from the source class
to the destination class. This can be any of the forms described in the previous section.

<associ ativeinstance handl e> isthe handle of an existing classinstance that is used as the
associative class instance for this relationship instance.

36

Chapter 7
Creating an Instance of a Relationship

7.2.2 Notes

The relationship specification should be framed as if navigating from source class to
destination class.

The source, destination, and associative instance handles may be sel f .

If an attempt is made to relate two instances via the same relationship more than once, thisis
regarded as arun time error by the BridgePoint Model Verifier unless the relationship is (M:
M)-M.

The usi ng <associ ative instance>form is used when an associative relationship is being
instantiated. The associative instance must have aready been created before the relationship
isinstantiated.

7.2.3 Examples

select any dp_inst frominstances of DP
select any d_inst frominstances of D
relate dp_inst to d_inst across Ri;

select any a_inst frominstances of A

select any b_inst frominstances of B;

create object instance c_inst of C

relate a_inst to b_inst across Rl using c_inst;

[/ State 3. "Assigning Probe to Row'
select any row frominstances of ROV

where (sel ected. needs_probe == true);
sel ect any probe frominstances of SP

where (selected. available == true);
probe. avail abl e = fal se;
row. needs_probe = fal se;
create object instance assignment of PA
relate row to probe across R2 using assignnent;
generate PA A3:probe_assigned() to PA class;
generate ROA: probe_assigned() to row,

37

Object Action Language Manual

7.3 Deleting an Instance of a Relationship

7.3.1 Syntax

unrel at e <sour ce i nst ance handl e> from<desti nation i nstance handl e> acr 0ss
<rel ationship specification>;

unrel at e <source i nstance handl e> from<desti nati on i nst ance handl e> acr 0ss
<rel ationship specification> using <associative instance handl e>;

<source instance handl e>isthe handle of the first class instance to be unrelated.
<destination instance handl e> isthe handle of the second class instance to be unrelated.

<rel ationshi p speci fication> isthe specification of the relationship from the source to
the destination class.

<associ ative i nstance handl e> is the handle of the associative class instance that captures
the relationship instance.

7.3.2 Notes

38

The relationship specification should be framed as if navigating from the source class to the
destination class.

An attempt to unrelate two instances that are not related by the specified relationship is
regarded as arun time error by the BridgePoint Model Verifier.

The source, destination, and associative instance handles may be sel f .

© If an associative rdationship is unrelated then the associative class instance(s) will not be
deleted. The analyst must specify this explicitly.

Chapter 7
Deleting an Instance of a Relationship

® If an unconditional relationship is deleted, instances of participating classes will not
automatically be deleted to remain consistent with the Class Diagram. It is the responsibility
of the analyst to ensure that the Class Diagram is respected. This applies equally to super/
subtype relationships.

7.3.3 Examples

unrelate a_inst fromb_inst across Ri;
unrelate a inst fromb_inst across RL using c_inst;
del ete object instance c_inst;

39

Object Action Language Manual

7.4 Relationship Navigation

Relationship navigation is the function whereby relati onships specified on the Class Diagram
areread in order to determine the instance or set of instancesthat are related to an instance of
interest.

7.4.1 Syntax

sel ect one <instance handle> rel ated by <start> -> <relationship link> ->
<rel ationship |ink>;

select any <instance handl e> related by <start> -> <relationship |ink> ->
<relationship |ink>;

sel ect many <i nstance handl e set>related by <start>-> <rel ationship |ink>
-> ... <relationship link>

sel ect one <instance handl e> related by <start> -> <relationship |ink> ->
<relationship link> where <where expression>;

sel ect any <instance handle> rel ated by <start> -> <relationship link> ->
<relationship |ink> where <where expression>;

sel ect many <instance handl e set>related by <start> -> <rel ationship link>
-> ... <relationship link> where <where expression>;

<start>isan<instance handle set> or <instance handl e> obtained from a previous
sel ect statement.

<relationshiplink>isac<keyletter>[<relationship specification>], wherethe
square brackets are literal and do not indicate optional text.

<keyl et t er > isthe keyletter of the class reached by the specified relationship.

<rel ationshi p specification>isthe specification of the relationship from the source
to the destination class.

<wher e expr essi on> isatype of boolean expression using the sel ect ed keyword.

40

Chapter 7
Relationship Navigation

7.4.2 Notes

A relationship link chain isthe sequence of <rel ati onship |ink>'s used to specify the path
from the starting instance or set of instances to the destination.

Usethesel ect one form if at most one instance handle can be returned by navigating the
relationship link chain.

Usethesel ect any or sel ect many form if more than one instance handle can be returned
by navigating the relationship link chain. Sel ect any returns asingle instance, and sel ect
many returns all instances that meet the selection criteria.

The sel ect any form returns the instance handle of an arbitrary instance of the class at the
end of the relationship link chain.

Thesel ect many form returns an instance handle set containing all the instances of the class
at the end of the relationship link chain.

Thesel ect any ... where form returns the instance handle of an arbitrary instance of the
class at the end of the relationship link chain that fulfills the <wher e expressi on> criteria.

Thesel ect many ... where form returns an instance handle set containing all the instances
of the class at the end of the instance chain that fulfill the <where expressi on> criteria.

The relationship phrases in the relationship link chain must be given in the direction of
navigation.

If the starting <i nst ance handl e> or <i nstance handl e set > isempty, then the result will
be considered arun time error.

The returned <i nst ance handl e> or <i nstance handl e set> can be empty if any of the
relationships in the chain are conditional in the direction of navigation.

If the optional wher e clause is added, the returned instance or set of instances will meet the

criteriaof <where expressi on>. Thisimpliesthat the instance handle or the instance handle
set may be empty if no instance(s) matched.

41

Object Action Language Manual

7.4.3 Example |

select one cat related by owner->JR1];
select any dog related by owner->0 R2];
sel ect many dogs rel ated by owner->D[R2];

sel ect any assignment frominstances of PA here (selected.probe ID ==
self.probe ID);

select any dog rel ated by owner->0 R2] where (selected. nane == "Fi do");
select many dogs related by owner->D[R2] where sel ected. col or == "bl ack";
7.4.4 Example Il

42

select any student frominstances of STU;
sel ect many maj or_courses_offered related by
st udent - >PROF[R34] - >DEPT[R23] - >COUR] R40] ;

EVENTS

8.1 Receiving Event Data

The keyword rcvd_evt isthe name of a structure containing all of the supplemental data
items received with an event.

8.1.1 Syntax

rcvd_evt. <suppl enental data itenp

<suppl emental data iten isthe name of the data item.

8.1.2 Note

rcvd_evt. <suppl enental data itenpisan <expressi on>and so can be used in any OAL
construct specifying an expression.

8.1.3 Example

select any robot frominstances of R
robot.from= rcvd_evt. source;
robot.to = rcvd_evt. destination;

/1
self.destination = rcvd_evt. destination;

43

Object Action Language Manual

8.2 Event Generation

8.2.1 Syntax

44

generate <event |abel> to <target>;

generate <event |abel > <event meaning> to <target>;

generate <event |abel > (<event paraneters>) to <target>;

generate <event |abel >: <event meaning> (<event parameters>) to <target>;
generate <instance handl e> <attri bute>;

<event |abel >is<keyl etter><event nunber>.

<event neani ng> isthe meaning of the event, enclosed by tick marksasin’turn off the
l'ight’; thetick marks may be omitted if the event meaning contains no spaces.

<event paramet er s> provides the supplemental data items (if any) to be carried by the
event. Each dataitemis giveninthe form <suppl emental data itenp: <expression>.
When multiple supplemental data items are required, separate the <suppl enment al dat a
i tenp: <expression> pairs by commas. If there are no supplemental data items, the
parentheses may be omitted.

<suppl emental data itenp isthe name of adataitem to be sent with the event.

<expressi on> isastring, arithmetic, boolean, simple, or compound expression. The
datatype of the expression must match the data type defined for the given dataitem.

<t ar get > is specified in avariety of ways, depending on the destination of the event.
For an event directed to an existing instance of aclass, <t ar get > is an instance handle.
For acreation event, <t arget > is: <keyl etter> creator.
For an event directed at a single-instance assigner, <t ar get > is: <keyl etter> cl ass.
For an event directed at an external entity, <t ar get > isthe external entity’s keyletters.

<instance_handl e> isahandle to an instance of aclass.

<attri but e> isthe name of an attribute of the class.

Chapter 8
Event Generation

8.2.2 Notes

Thet o clause provides al the information necessary to identify the destination of the event.

If an event has no supplemental data items, the empty parentheses around <event
par amet er s> may be omitted.

Supplemental dataitems may appear in any order in <event par anet ers>.
All supplemental dataitems defined for the event must be supplied.

The <event neani ng> field is optional. It must be enclosed in tick marksif it contains
spaces, and it must be contained on asingleline.

If <event neani ng> is not used, the colon after <event | abel > must be omitted.

8.2.3 Examples

Il event to existing instance

[/ State 1. "Up"

self.current_position = "up";

select one row related by sel f->RONR2];
generate ROM: sanple conplete() to row

Il creation event
generate Sl:'Create sale’ (dept:dept_no, anount:sale value) to S creator;

/1 event to assigner
generate PA Al:row needs_probe() to PA class;

Il event to external entity
generate PIO7:' Mtor start’ (notor_no:nmotor _id) to PIG

45

Object Action Language Manual

8.3 Event Pre-creation

An event may be created without sending it by using the create event statement. This
statement should be used only

© to create an event for an analysis timer.

© asdirected by the rules of the particular architecture onto which you plan to trand ate
your models.

8.3.1 Syntax

create event instance <event instance> of <event |abel> to <target>;

create event instance <event instance> of <event |abel > <event meaning>to
<target>;

create event instance <event instance> of <event |abel > (<event
parameters>) to <target>;

create event instance <event instance> of <event |abel > <event neaning>
(<event paraneters>)to <target>;

<event | abel >, <event neani ng>, <event paranet ers> and <t ar get > are as defined in
"Event Generation" on page 44.

<event instance>isalocal variable of type event instance.

8.3.2 Notes

Thelocal variable <event i nstance> can be used to refer to an event instance of any type.
Event instances can be assigned to attributes of classes that are of type event instance.

Please refer to the notesin "Event Generation” on page 44.

46

Chapter 8
Sending a Pre-created Event

8.4 Sending a Pre-created Event

Event instances may be sent using the gener at e statement.

8.4.1 Syntax

generate <event instance>;

generate <instance handl e>. <attribute>;
<event instance>isalocal variable of type event instance.
<i nstance handl e> isahandle to an instance of aclass.

<attribut e>isan attribute of the class.

8.4.2 Notes

Sends a pre-created event to its intended recipient.
©® This feature is provided for use with analysis timers. These timers will eventually be

replaced with delayed events, at which time, support for pre-created events will likely be
removed.

47

Object Action Language Manual

48

EXPRESSIONS

9.1 Simple Expressions

Simple expressions are single unary or binary operations. An expression is not a complete
OAL statement, but is evaluated as part of a full OAL statement such as assi gn, i f, where,
etc. Logical binary operators and and or are supported for both compound and simple
expressions.

9.1.1 Syntax

<read val ue>
<unary operator> <read val ue>
<read val ue> <binary operator> <read val ue>

<read val ue> isaconstant, alocal variable, the attribute of a class, a supplemental dataitem
received from an event, an operation invocation, abridge invocation, or afunction invocation.
It can also be a parameter specified with the par amkeyword in the action of a bridge
operation, function, or operation.

<unary oper at or > is any unary operator appropriate for the data type to which the expression
evaluates. For boolean read values, the unary operator isnot . For arithmetic read values, the
unary operatorsare + and - . For instance handle and instance handl e set read values, the unary
operatorsareenpty, not _enpty, andcardinality.

<bi nary operat or > is any binary operator appropriate for the data types to which the
expressions evaluate. For boolean read values, the binary operators are and and or. For
arithmetic read values, the binary operators are +, -, *, /, and % For instance handle and
instance handle set read values, the binary operators are == and ! =. For string read values, the
binary operator is +.

49

Object Action Language Manual

9.1.2 Example

not (CHK: :get status())
Xty

name == "Jeff"

"Bridge" + "Point"
custl.age - cust2.age

9.2 Compound Expressions

Compound expressions can be used to combine simple expressions, allowing for multiple
tests and more complex assignment arithmetic. Logical binary operators and and or are
supported for both compound and simple expressions.

9.2.1 Syntax

<oper at or > <expressi on>

<read val ue> <operator> <expressi on>

<expressi on> <operator> <read val ue>

<expressi on> <operator> <expressi on>
<expressi on> isasimple or acompound expression.

<oper at or > is any operator appropriate for the data types to which the expressions eval uate.

<read val ue> isaconstant, alocal variable, the attribute of a class, a supplementa dataitem
received from an event, an operation invocation, abridge invocation, or afunction invocation.

50

Chapter 9
Compound Expressions

9.2.2 Notes

The analyst can depend on the following rules regarding the order of evaluation of
expressions:

» Parentheses can be used to override all other ordering rules.

» Standard mathematical precedence governs the order of evaluation for al
mathematical operations.

« All subexpressions with operators of equal precedence are evaluated from left to
right, starting with the operators of highest precedence. Thisis repeated until the
compound expression has been completely evaluated.

e A short-circuit with regard to compound expressions means that an expression
can be fully evaluated based upon the value of one of its subexpressions.
Whether or not short-circuiting occurs depends entirely on the implementation
of the software architecture or the simulator being used. The analyst should
therefore avoid writing OAL that depends on short-circuiting of expressions.

9.2.3 Examples

Il exanpl es of conpound expressions:

not (armavailable and servo. on)

2% (x+y) + TIM:timer_remaining time(timer_inst ref:timer 1)
(a+b)/ (c-d

Il exanples of QAL statements using

/'l conmpound expressi ons:

if ((i ==1) AND (name == "Doug"))
assign x = 0.5* (y + 2);

end if;

x=x* ((x +1) [(x+2);

51

Object Action Language Manual

9.3 Arithmetic Expressions

Arithmetic expressions are defined for real and integer data types only. These data types may
be mixed for any given expression. Multiplicative operatorsare*, / , and % Additive operators
are + and - . Multiplicative operators take precedence over additive operators. Parentheses
may be used to force precedence in arithmetic expressions.

9.3.1 Syntax

<unary arithmetic operator> <expression>
<expressi on> <binary arithmetic operator> <expression>

<expressi on> is any of the following that evaluates to areal or integer value: numeric
constant, local variable, attribute of a class, simple expression, compound expression,
operation invocation, bridge invocation, function invocation, or supplemental data item
received from an event.

<unary arithmetic operator>is+or-.

<binary arithnetic operator>is+,-,*,/, or %(remainder from arithmetic division).

9.3.2 Note

If any dataitem in the expression isreal, the expression will evaluate to a data type of real.

9.3.3 Examples

52

-27

2 +2

(x +y) [2

0.707 * vol tage

(plane.offset + ALT::get _altitude())

Chapter 9
Boolean Expressions

9.4 Boolean Expressions

A boolean expression is any expression that evaluates to either a TRUE or FALSE value.
Boolean expressions are often used for comparison in statementslikei f and whi | e, and also
inwher e clauses. Although boolean expressions usually contain other expression types (such
as arithmetic or string expressions), they can also be used to compare time values, handles,
and unique IDs. Thereis also one unary operator, not , which can be used to logicaly negate
aboolean expression.

9.4.1 Syntax

not <bool ean expressi on>

<expressi on> <bool ean operat or> <expressi on>
<time val ue> <hool ean operator> <tine val ue>
<handl e> <bool ean operat or> <handl e>

<uni que_i d> <bool ean operator> <uni que_i d>

<expressi on> isany expression, simple or compound. Both expressions must evaluate to the
same type, either boolean, arithmetic, or string.

<bhool ean expr essi on>isasimple or compound expression that evaluates to aboolean value.
<bool ean operat or> isalogical operator (refer to "Table 9-1" on page 54).

<tine val ue> adate or atimestamp variable (or an operation, bridge, or function invocation
that returns a date or a timestamp).

<hand| e> aninstance handle, instance handle set, or atimer handle (or an operation, bridge, or
function invocation that returns a handle to atimer).

<uni que i d> avariable of type unique ID (or an operation, bridge, or function invocation that
returns aunique ID).

53

Object Action Language Manual

9.4.2 Note

The left and right values of abinary boolean expression must eval uate to the same data type,
with the exception of integer and real.

9.4.3 Examples

X ==

id!="abc"

CTL::error() or flag

(account. bal ance == 0.00) and ((TIM:get current time() - last_pay time) >=

max_wai t)
L ogical M eaning Valid Data Types
Operator

= equals integer, real, boolean, date, timestamp, string,
instance handle, unique ID, handle set, timer handle

I= does not equal integer, real, boolean, date, timestamp, string,
instance handle, unique ID, handle set, timer handle

< less than integer, real, date, timestamp, string

> greater than integer, real, date, timestamp, string

<= less than or equal to integer, real, date, timestamp, string

>= greater than or equal to integer, real, date, timestamp, string

and logical and boolean

or inclusive logical or boolean

not logical negation boolean

Table 9-1: Thelogical operators defined in the Object Action Language. Note that certain operators are
valid for certain data types only

54

Chapter 9
String Expressions

9.5 String Expressions

A string expression is any expression that evaluates to a string value. String expressions can
be either a simple string or a concatenation of one or more simple strings.

9.5.1 Syntax

<sinple string>
<sinple string> + ... + <sinple string>;

<si npl e string>isany of thefollowing that evaluatesto astring value: string constant, local

variable, attribute of a class, operation invocation, bridge invocation, function invocation, or
asupplemental dataitem received from an event.

9.5.2 Examples

"Hello, world!"
n EXeCut abl ell + II_II + n UM_II
cust.first _name + " " + cust.|ast_name

CHS: : get _date string(date:TIM:current_date())

9.6 Where Expressions

A wher e expression is a special type of boolean expression used in asel ect statement. The
instance handle sel ect ed is valid only within the wher e expression. The sel ect ed keyword
should be used as an instance reference to access the instances of the given set for the sel ect
statement containing the wher e expression. The wher e expression must evaluate to a boolean
value, and must use the sel ect ed keyword.

9.6.1 Note

Thewher e expression can only be used in the wher e clause of asel ect statement.

55

Object Action Language Manual

9.6.2 Examples

select any firstname in EMP where sel ected. nane == "Bob";

sel ect many accounts in ACC where (sel ected. status == "Ck") and
(sel ected. bal ance > (nin_bal + 200));

Il Use where clause to find a particular probe.

sel ect any probe frominstances of SP

where sel ected. probe_| D == param probe_i d;
generate SP3: probe_in_position to probe;

9.7 Assignment of Variables

Calculations are performed using the following form of the assi gn statement:

9.7.1 Syntax

[assign] <bool ean var> = <hool ean expressi on>;
[assign] <arithmetic var> = <arithmetic expression>;
[assign] <string var> = <string expression>;
<bool ean expressi on> isan expression evaluating to TRUE or FALSE.
<arithmetic expression>isan expression evaluating to areal or an integer value.
<string expression>isan expression evaluating to a string value.
<bool ean var > isaboolean variable or a boolean attribute of a class instance.

<arithmetic var>isareal orinteger variable or areal or integer attribute of aclassinstance.

<string var>isastring variable or a string attribute of a class instance.

56

Chapter 9
Constants

9.7.2 Notes

Arithmetic expressions are defined for real and integer data types only.

If <arithnetic var>isaloca variable that is being assigned for the first time, it will be of
type integer if <arithmetic expressi on> evaluates to type integer, and of type real if
<arithmetic expression> evaluatesto typereal.

Oncean<arithmetic var> hasbeenassigned, it will not change datatype from real to integer
or from integer to real. Real and integer variables can, however be assigned integer or real
values respectively.

If areal valueisassigned to an integer variable, the fractional component is truncated.

The actual precision and truncation rules for arithmetic calculation depend on the software
architecture and implementation domains in use.

Theassi gn keyword is optional.

9.7.3 Examples

assign x = 1;

pass = TRUE;

assign nane = "Rover";

f = RTR :get_frequency() + 100;

9.8 Constants

In many of the examples, constants have been used as parts of expressions. While this serves
well for the purposes of illustration, it should be noted that most analysis models require
minimal use of constants since such data is more commonly stored as attributes of
specification classes.

57

Object Action Language Manual

9.8.1 Syntax

The syntax depends on the base data type:

Integer: 1,42, -127, etc.
Real: 1.0,4.5, -56.0, etc.
String: "string"

Boolean: TRUE, FALSE

Table 9-2: Syntax of Constant Data

9.8.2 Notes

Constants may be defined for the above data types only.

A constant may be used in any construct requiring an expression.

9.9 Additional Unary Operators

Three set operators have been provided to allow the analyst to determine the size of an
instance handle set or whether or not an instance handle is defined. These operations may be
performed anywhere an expression may be used.

9.9.1 Syntax

empty <handl e>
not _enpty <handl e>
cardinality <handl e>

<handl e> is an <i nst ance handl e> or <i nst ance handl e set>.

58

Chapter 9
Additional Unary Operators

9.9.2 Notes

enpty and not _enpt y return avalue of type boolean.

cardinal i ty returns an integer value.

9.9.3 Example

select one d_inst related by self->DR1];
if (not_enpty d_inst)

/| Statements here protected against access to enpty d_inst.
end if;

59

Object Action Language Manual

60

10

OPERATIONS, BRIDGES, AND FUNCTIONS

10.1O0peration Invocation

The analyst may define class-based and instance-based operations as desired using the
Operation Data Editor for a class under the Class Diagram. An operation invocation can be
used as a stand-alone statement or it can be used in an expression.

10.1.1 Syntax
As a operation expression:
<keyl etter>;:<cl ass-based operation name> (<data itenp:<expression>, ...)

<instance handl e>. <i nstance-based operation nane> (<data itenp:
<expression>, ...)

As a stand-alone operation assignment statement:

<variabl e> = <keyl etter>::<cl ass-based operation name> (<data itenp:
<expression> ...);

<variabl e> = <instance handl e>. <i nstance-based operation nane> (<data
i temp: <expression>, ...);

<keyl et t er > isthe keyletter of a class.
<i nst ance handl e> isahandle to an instance of a class.

<cl ass- based oper ati on> and <i nst ance- based oper at i on> are the name of the operation.

61

Object Action Language Manual

<data it enmp isthe name of adataitem defined asinput for <cl ass- based operation name>
or <i nstance- based operation name>.

<expressi on> is a string, arithmetic, boolean, simple, or compound expression. The data
type of the expression must match the data type defined for the given data item.

<vari abl e> isaclass attribute or alocal variable.

10.1.2 Notes

62

An operation expression may be used anywhere an expression is valid (e.g., assignment
statement read values, control logic expressions, etc.).

The stand-al one operation must always be a stand-alone statement and cannot be used as an
expression within another statement.

Since an operation expression may be used anywhere an expression may be used, stand-alone
operation assignment statements are not necessary. The user may simply use an operation
expression as a read value and use an assi gn statement to assign the return value to
<variabl e>.

Parentheses are required even if there are no dataitems.

If <vari abl e> isalocal variablethat is being assigned for the first time, it will be of the same
datatype as the return value of <operation nane>.

If the type of <vari abl e> has aready been established (that is, if it is the attribute of a class
or alocal variable that has been previously assigned), then either:

e <vari abl e> must be of the same data type as the output value of the operation,

or

 the output value of the operation is of typeinteger or real and <vari abl e> is
of typeinteger orreal .

Chapter 10
Bridge Invocation

10.1.3 Example

/| operation expressions wthout assigning the return val ue
DD: : open(wai t: 20);
wi ndow. update(title:"Dial og”);

Il operation expression as an assignment statenent read val ue
volume = DD: :get _vol une();

/| operation expression within a while |oop
while (MOD: :status() !'=1)

value = this_nod. poll();
end while;

/| stand-al one operation assignnent statement
branch = TR : get _next _branch();

10.2Bridge Invocation

10.2.1 Syntax
As abridge expression:
<eekeyl etter>::<bridge name> (data itenmp:<expression> ...)
As a stand-alone bridge assignment statement:
<variabl e> = <eekeyl etter>:: <bridge name> (<data itenp: <expression>, ...);
<eekeyl et t er > are the keyletters of an external entity.
<pbri dge nane> isthe name of a bridge assigned to the external entity.

<data itenp isthe name of adataitem input to <bri dge name>.

63

Object Action Language Manual

<expressi on> is astring, arithmetic, boolean, simple or compound expression. The data
type of the expression must match the data type defined for the given dataitem.

<vari abl e> isaclass attribute or alocal variable.

10.2.2 Notes

64

It is strongly recommended that BridgePoint’s external entities be used only to represent
domains.

A bridge expression may be used anywhere an expression isvalid (e.g., assignment statement
read values, control logic expressions, etc.).

The stand-alone bridge assignment statement must always be a stand-al one statement and
cannot be used as an expression within another statement.

Since a bridge expression may be used anywhere an expression may be used, stand-alone
bridge assignment statements are not necessary. The user may simply use a bridge expression
asaread value and use an assi gh statement to assign the return value to <var i abl e>.

Parentheses are required even if there are no dataitems.

If <vari abl e> isalocal variablethat is being assigned for the first time, it will be of the same
datatype as the output value of <bri dge nane>.

If the type of <vari abl e> has already been established (that is, if it is the attribute of a class
or alocal variable that has previously been assigned), then either:

e <variabl e> must be of the same data type as the output value of the bridge,

or

« the output value of the bridge is of typeint eger or real and <vari abl e> is of
typeinteger orreal .

Chapter 10
Bridge Invocation

10.2.3 Example

/1 bridge expression wthout assigning the return value
Ql::start();

Il bridge expression as an assignment statement read val ue
cur_time = bridge TIM:current _tinme();

/1 bridge expression within the test part of an if statenent

if (TIM:tinmer_add time(timer_inst ref:my_timer, mcroseconds:500))
wait = wait + 500;

end if;

/| stand-al one bridge assignment statenent
bridge my _timer = TIM:tiner_start(n croseconds: 500, event inst:ny_evt);

Il State 4. "Raising"

needl e_position = SPPI O :raise_needle (
radi al _position:self.radial position,
theta offset:self.theta offset,
probe id:self.probe_ ID);

10.2.4 Avoiding Ambiguity in Invocations

Ambiguity among class and bridge operations can arise if the following conditions are
present within a single domain:

* Anexterna entity (EE) and aclass share the same keyletters.

e The EE has a bridge operation with the same name as a class operation
associated with the class.

When set, the Class Keyletters check-box under Preferences | User | Audits will report any
EE’s and Classes that share the same key letters. The key letter ambiguity should be removed
by changing the key letter of either the EE or the class.

65

Object Action Language Manual

10.3Function Invocation

A function is an operation that is global to the domain being modeled. Unlike class
operations and bridge operations, afunction’s scope is at the domain level.

10.3.1 Syntax

As afunction expression:
.. <function name> (data itenp: <expression>, ...)
As a stand-alone function assignment statement:
<variable> = ::<function name> (<data itenp: <expression> ...);
<function nane> isthe name of afunction.
<dat a iten» isthe name of adataitem input to <f unction name>.

<expressi on> is astring, arithmetic, boolean, simple or compound expression. The data
type of the expression must match the data type defined for the given dataitem.

<vari abl e> isaclass attribute or alocal variable.

10.3.2 Notes

66

It is strongly recommended that functions be named according to some convention that
conveys their meaning throughout the domain.

A function expression may be used anywhere an expression is valid (e.g., assignment
statement read values, control logic expressions, €tc.).

The stand-alone function assignment statement must always be a stand-alone statement and
cannot be used as an expression within another statement.

Chapter 10
Function Invocation

Since a function expression may be used anywhere an expression may be used, stand-alone
function assignment statements are not necessary. The user may simply use a function
expression as a read value and use an assi gn statement to assign the return value to
<vari abl e>.

Parentheses are required even if there are no dataitems.

If <vari abl e> isalocal variablethat is being assigned for the first time, it will be of the same
datatype as the output value of <f unction name>.

If the type of <vari abl e> has aready been established (that is, if it is the attribute of a class
or alocal variable that has previously been assigned), then either:

e <variabl e> must be of the same data type as the output value of <function
nane>

or

» theoutput value of <f uncti on nane> isof typeinteger or real and <vari abl e> is
of typeint eger orreal .

10.3.3 Example

/1 function expression wthout assigning the return val ue
costart();

Il function expression as an assignnent statement read val ue
cur_ext time = ::current_external time();

/1 function expression within the test part of an if statenent
if (::shutdown())

generate S1.' Shutdown’ () to S Creator;
end if;

/1 stand-al one function assignment statenent
status = ::shutdown();

67

Object Action Language Manual

10.40bject Action Language for Invocations

OAL can be specified for class and instance-based operations, bridge operations, and
functions. The syntax rules applied to actions for these differ slightly from those applied to
state actions. These differences are described in detail below.

10.4.1 Return Statement

Since class operations, bridge operations, and functions can return a value, thereturn
statement is accepted within their actions.

Syntax

return <expr essi on>;
return;

<expressi on> isastring, arithmetic, boolean, simple or compound expression. The datatype
of the expression must match the data type defined for the return value of the class operation,
bridge operation, or function.

Notes

When executed, ther et ur n statement causes control to be returned to the caller.

The value returned to the caller is <expr essi on>.

If the return value of the class operation, bridge operation, or function is void, then
<expressi on> must be omitted.

68

Chapter 10
Object Action Language for Invocations

Example

select any dog frominstances of DOG
return dog. wei ght;

I/ SSPIQ Bridge "Lower needle"
sel ect any probe frominstances of SP
where sel ect ed. probe_| D == param probe_i d;

generate SP3: probe_in_position to probe;
return "down";

10.4.2 Parameters

Class and instance-based operations, bridge operations, and functions can accept parameters.
These parameters can be accessed as read values by using the par amkeyword within the
action. They can be modified if they are by-reference parameters.

Syntax

param <par anet er >

<par anet er > isthe name of a parameter.

Note

param <par anet er > isan <expr essi on> and so can be used in any OAL construct specifying
an expression.

69

Object Action Language Manual

Example

/1 For an invocation like MATH : SQR(X: 3)
Il Return x**2
return paramx * paramx;

10.4.3 Use of self keyword

Instance-based operations can use the keyword sel f to reference the instance to which the
operation is currently being applied. The sel f keyword can be used anywhere that is valid.

Note

Class-based operations, bridge operations, and functions can not use the sel f keyword since
they are not related to a specific instance.

Example

Il attribute access

self.a = self.b;

/| event generation
generate EL:'one' () to self;

10.4.4 Other Differences

Class and instance-based operations, bridge operations, and functions may not refer to the
rcvd_evt keyword. This keyword is only allowed within a state action since these are the
only actions that can receive events.

70

11

DATE AND TIME

11.1External and Internal Time

This section describes statements that support date and time. The OAL supports two different
concepts of time:

External time: Time as known in the external world. For example, 12 October 1492,
13:25:10. The accuracy of external time is dependent on the architecture and
implementation.

Internal time: Aninternal system clock that measurestimein “ticks’. The value of atick
is dependent upon the architecture and implementation.

11.1.1 External Time

Syntax

To create a<dat e vari abl e>, write
[bridge] <date variable> = TIM:create date (day:<arithmetic expression>,
nont h: <arithnetic expression>, year:<arithnetic expression>,
second: <arithmetic expression> minute:<arithmetic expression>,
hour: <arithnetic expression>);
To read the current date or time, write

[bridge] <date variable> = TIM:current _date ();

71

Object Action Language Manual

To extract components of a<dat e vari abl e>

<integer variable> = TIM:get _day (date:<date variable>);
<integer variable> = TIM:get nmonth (date:<date variable>);
<integer variable> = TIM:get year (date:<date variable>);
<integer variable> = TIM:get_second (date:<date variabl e>);
<integer variable> = TIM:get _nminute (date:<date variable>);
<integer variable> = TIM:get _hour (date:<date variable>);

<arithmetic expression>isan arithmetic expression evaluating to an integer value.
<dat e variabl e>isalocal variable or aclass attribute of type dat e.

<integer variabl e>isalocal variable or aclass attribute of typei nt eger.

Note

External timeis represented by a 24-hour clock.

11.1.2 Internal Time

Syntax

To read the internal system clock, write
[bridge] <time variable> = TIM:current_clock ();

<tinme variabl e>isalocal variable or aclass attribute of typet i mest anp.

Note

The system clock countstimein ticks. The size of atick is dependent on the architecture and
implementation.

72

12

TIMERS

12.1Starting a Timer

12.1.1 Syntax

[bridge] <timer handle> = TIM:tiner_start (nicroseconds:<arithnetic
expressi on>, event _inst:<event instance>);

<timer handl e>isahandleto atimer instance.

<arithmetic expression>isan expression that evaluesto an integer value.

<event instance> isahandleto an event instance.

This bridge operation starts atimer set to expirein<arithnmetic expressi on> microseconds,
generating the event <event i nst ance> upon expiration. Returns the instance handle of the
timer.

Thebri dge keyword is optional.

[bridge] <tinmer handle> = TIM:tinmer_start_recurring (nicroseconds:
<arithmetic expression> event _inst:<event instance>);

<timer handl e>isahandleto atimer instance.
<arithmetic expression>isan expression that evaluesto an integer value.

<event instance> isahandleto an event instance.

73

Object Action Language Manual

This bridge operation starts atimer set to expirein<arithnmetic expr essi on> microseconds,
generating the event <event i nst ance> upon expiration. Upon expiration, the timer will be
restarted and fire again in <ari t hmeti ¢ expressi on> microseconds generating the event
<event i nst ance>. This bridge operation returns the instance handle of the timer.

Thebri dge keyword is optional.

12.1.2 Example

/1 State 3. "Down"

select one row related by sel f->RONR2];

st = row sanpling_time;

create event instance nove on of SPL:finished sanpling() to self;
mo_timer = TIM:timer_start(m croseconds:st, event_inst:move_on);

12.2Querying a Timer

12.2.1 Syntax

[bridge] <integer variable> = TIM:tinmer_remaining time (timer_inst ref:
<timer handle>);

<integer variabl e>isalocal variable or aclass attribute of typei nt eger.
<timer handl e>isahandleto atimer instance.

Returns the time remaining (in microseconds) for the timer specified by <ti mer handl e>. If
the timer has expired, a zero value is returned.

Thebri dge keyword is optional.

Chapter 12
Manipulating a Timer

12.3Manipulating a Timer

12.3.1 Syntax

[bridge] <boolean variable>=TIM:timer _reset time (timer_inst ref:<timer
handl e>, i croseconds: <arithnetic expression>);

<bool ean vari abl e> isaloca variable or aclass attribute of type bool ean.

<timer handl e>isahandleto atimer instance.

<arithmetic expression>isan expression that evaluesto an integer value.

This bridge operation attempts to set an existing timer <ti mer handl e> to expirein
<arithnetic expressi on> microseconds. If the timer exists (that is, it has not expired), a

TRUE value isreturned. If the timer no longer exists, a FALSE valueis returned.

[bridge] <boolean variable> = TIM:tinmer_add tine (timer_inst _ref:<timer
handl e>, i croseconds: <arithnetic expression>);

<bool ean vari abl e> isalocal variable or aclass attribute of type bool ean.

<timer handl e>isahandleto atimer instance.

<arithmetic expression>isan expression that evaluesto an integer value.

This bridge operation attemptsto add <ari t hnet i ¢ expr essi on> microseconds to an existing
timer <ti mer handl e>. If the timer exists (that is, it has not expired), a TRUE value is

returned. If the timer no longer exists, a FALSE value is returned.

Thebri dge keyword is optional.

75

Object Action Language Manual

12.4Canceling a Timer

12.4.1 Syntax

[bridge] <boolean variable> = TIM:tinmer_cancel (timer_inst ref:<tiner
handl e>) ;

<bool ean vari abl e> isalocal variable or a class attribute of type bool ean.

<timer handl e>isahandleto atimer instance.

This bridge operation cancels and deletes the timer specified by <timer handl e>. If the
timer exists (that is, it had not expired), aTRUE valueisreturned. If thetimer no longer exists,
aFALSE valueis returned.

Thebri dge keyword is optional.

12.4.2 Notes

76

When atimer fires, it is deleted unless it was created using the ti mer _start_recurring
bridge operation.

In many architectures there may be a delay between the expiration of atimer and the delivery
of the associated event to the receiving state machine.

REFERENCES

A.1 References

The following published works were used in compiling this manual.

Mel02 Stephen J. Mellor and Marc J. Balcer, Executable UML: A Foundation for
Model-Driven Architecture, Addison-Wesley, Boston, MA, 2002

Shi92 Sally Shlaer and Stephen J. Mellor, Object Lifecycles: Modeling the World in Sates,
Prentice Hall, Englewood Cliffs, 1992

Shl95 Sally Shlaer and Neil Lang, Shlaer-Médllor Method: The OOA96 Report, Project
Technology, Inc., Berkeley, California, 1995

Wil95 lan Wilkie, Adrian King, and Mike Clarke, The Action Specification Language (ASL)
Reference Guide, version 2.4, Kennedy-Carter, London, 1995

77

Object Action Language Manual

78

KEYWORDS

B.1 Keywords

The following enumerates the list of reserved words.:

across and any assign
assi gner br eak bridge by
cardinality cl ass continue create
creator delete each elif
el se empty end event
fal se for from generate
if in i nstance i nst ances
many not not _empty obj ect
of one or param
revd_evt relate related return
sel ect sel ect ed sel f to
transform true unrel ate using
where while

Table B-1: BridgePoint Object Action Language Keywords

Any keyword can appear in full upper case, full lower case or with the first character in upper

case and the remaining charactersin lower case.

79

Object Action Language Manual

80

SYNTAX SUMMARY

C.1 Language Constructs

C.1.1 Control Logic

if (<bool ean expression>)
Il Executed if above bool ean expression eval uates to TRUE
<stat ement s>

elif (<bool ean expression>)
Il Executed if above bool ean expression evaluates to TRUE and previous
bool ean expression is FALSE
<stat enent s>

el se
Il Executed if both bool ean expressions eval uate to FALSE
<stat ement s>

end if;

for each <instance handl e> in <instance handl e set>
<st at ement s>

end for;

whil e <bool ean expressi on>
<st at ement s>

end while;

br eak;

conti nue;

81

Object Action Language Manual

C.1.2 Instance Creation

create object instance <instance handl e> of <keyletter>

create object instance of <keyletter>

C.1.3 Instance Selection

sel ect any <instance handl e> frominstances of <keyletter> [where <where
expression> |;

sel ect many <instance handl e set> frominstances of <keyletter> [where
<where expression> |;

C.1.4 Writing Attributes

[assign] <instance handl e>. <attribute> = <expression>

[assign] self.<attribute> = <expression>, // Mthematically-dependent only

C.1.5 Reading Attributes

[assign] <variable> = <instance handl e>. <attribute>

C.1.6 Instance Deletion

del ete object instance <instance handl e>

82

Appendix C
Language Constructs

C.1.7 Creating Instances of a Relationship

rel ate <source instance handl e> to <destination instance handl e> across
<rel ationship specification>

relate <source instance handle> to <destination instance handl e> across
<rel ationship specification> using <associative instance handl e>

C.1.8 Deleting Instances of a Relationship

unrel ate <source instance handl e> from <destination instance handl e> across
<rel ationship specification>

unrel ate <source instance handl e> from <destination instance handl e> across
<rel ationship specification> using <associative instance handl e>

C.1.9 Instance Selection by Relationship Navigation

sel ect one <instance handle> related by <start> -> <relationship link chain>
[where <where expression> |;

sel ect any <instance handle> related by <start> -> <relationship link chain>
[where <where expression> |

sel ect many <instance handle set> related by <start> -> <relationship link
chain> [where <where expression> |;

C.1.10 Creating Events

create event instance <event instance> of <event |abel >[:<event nmeani ng>]
[(<event parameters>)] to <target>

83

Object Action Language Manual

C.1.11 Generating Events

generate <event |abel >[:<event meaning>] [(<event paraneters>)] to <target>
generate <event instance>

generate <instance handl e>. <attribute>

C.1.12 Accessing Event Data

rcvd_evt. <suppl emental data itenp

C.1.13 Arithmetic, Logical, and String Assignment

[assign] <bool ean var> = <bool ean expressi on>
[assign] <arithmetic var> = <arithmetic expression>

[assign] <string var> = <string expression>

C.1.14 Unary Operators

enpty <handl e>
not _enpty <handl e>

cardinality <handl e>

84

Appendix C
Language Constructs

C.1.15 Operations

[transforn] <keyletter>::<operation name> (<data itenp:<expression> ...);

[assign] <variable> = [transforn] <keyletter>::<operation name> (<data itenp:
<expression> ...);

C.1.16 Bridges
[bridge] <eekeyletter>::<bridge name> (<data itenp:<expression> ...);

[assign] <variable> = [bridge] <eekeyletter>::<bridge name> (<data itenp:
<expression> ...);

C.1.17 Functions
.. <function name> (<data itenp:<expression> ...);

[assign] <variable> = ::<function name> (<data itenp:<expression> ...);

C.1.18 Object Action Language for Non-State Actions

return <expression>
return;

param <par anet er >

85

Object Action Language Manual

C.1.19 Date and Time

[bridge] <date variable> = TIM:create date (day:<arithmetic expression>,
mont h: <arithmetic expression>, year:<arithmetic expression>, second:
<arithmetic expression> mnute:<arithmetic expression> hour:<arithmetic
expressi on>) ;

[bridge] <date variable> = TIM:current _date ();

[bridge] <time variable> = TIM:current_clock ();

<integer variable> = TIM:get day (date:<date variable>);
<integer variable> = TIM:get _nonth (date:<date variable>);
<integer variable> = TIM:get _year (date:<date variable>);
<integer variable> = TIM:get second (date:<date variable>);

<integer variable> = TIM:get _nminute (date:<date variable>);

<integer variable> = TIM:get _hour (date:<date variable>);

C.1.20 Timers

86

[bridge] <timer handle> = TIM:timer_start (mcroseconds:<arithmetic
expression>, event _inst:<event instance>);

[bridge] <tinmer handle> = TIM:timer_start recurring (mcroseconds:<arithnetic
expressi on>, event _inst:<event instance>);

[bridge] <integer variable> = TIM:timer _remaining time (timer_inst ref:<tiner
handl e>) ;

[bridge] <boolean variable> = TIM:timer_reset time (timer_inst ref:<timer
handl e>, i croseconds: <arithnetic expression>);

Appendix C
Language Constructs

[bridge] <boolean variable> = TIM:timer_add time (timer_inst_ref:<timer
handl e>, i croseconds: <arithnetic expression>);

[bridge] <boolean variable> = TIM:tinmer_cancel (tiner_inst ref:<timer handl e>

);

87

Object Action Language Manual

C.2 Statement Components

<arithmetic expression>

an expression evaluating to areal or an integer value. Used in places where
only an integer isrequired.

<arithmetic operator>

a +,-,*%, [, or%(remainder from arithmetic division)

<attribute>

the name of an attribute

<binary operator>

anand,or, +,-,*%,/,0or%

<boolean expression>

an expression evaluating to TRUE or FALSE

<bridge name>

the name of a bridge defined for the external entity specified by
<eekeyletter>.

<eekeyletter>

the keyletter of an external entity

<event instance>

alocal variable of type event instance

<event |abel>

the <keyletter><event number>

<event meaning>

the meaning of the event, asin 'turn off the light’; the tick marks may be
omitted if the event meaning contains no spaces.

<event parameters>

the supplemental dataitems (if any) to be carried by the event. Each data
itemisgivenin the form <supplemental data item>:<expression>.

<handle>

an <instance handle>, <instance handle set>, or atimer handle (or a bridge,
operation, or function invocation that returns atimer handle).

<instance handle>

alocal variable referring to a single instance

<instance handle set>

alocal variable referring to a set of instance handles

<keyletter>

the key letters of aclass

<operation name>

the name of a operation defined for the class specified by <keyletter>.

<read value>

areadable value: aconstant, local variable, <instance handle>.<attribute>,
rcvd_evt .<supplemental dataitem>, par am<parameter>, or an invocation
of an operation, bridge operation, or function.

<relationship link>

a <keyletter>[<relationship specification>], where the square brackets are
literal and do not indicate optional text.

88

Table C-1: Statement Components

Appendix
Production Rul

C
es

<relationship link
chain>

<relationship link> or <relationship link> -> ... -> <relationship link>

<relationship phrase>

the text description of the relationship enclosed in tick marks

<relationship
specification>

R<number> or R<number>.<relationship phrase>

<simple string>

any of the following that evaluates to a string value: string constant, local
variable, attribute, operation invocation, bridge invocation, function
invocation, or a supplemental data item received from an event.

<string expression>

an expression evaluating to a string value

<supplemental data
item>

the name of a supplemental dataitem

<unary operator>

aunary operator such asnot for boolean expressionsand + and - for
arithmetic expressions.

<uniqueid> avariable of type unique ID (or an operation, bridge or function invocation
that returns a unique ID).
<where expression> a special boolean expression at the end of a select statement; it must contain

the sel ect ed keyword.

Table C-1. Statement Components

C.3 Production Rules

This section contains the production rules for the language expressed in EBNF.

statement ::= (assignment_statement | break_statement | bridge_statement | bridge_or_operation_statement
| continue_statement | create event statement | create object statement | delete statement |
empty_statement | for_statement | function_statement | generate statement | if_statement |
operation_statement | relate_statement | return_statement | select_statement | unrelate_statement |
while_statement) SEMI ;

assignment_statement ::= [ASSIGN] assignment_expr ;

break statement ::= BREAK ;

bridge statement ::= BRIDGE [(local_variable | attribute_access) EQUAL] bridge _invocation ;

bridge or_operation_statement ::= bridge or_operation_invocation ;

89

Object Action Language Manual

continue_statement ::= CONTINUE ;
create event_statement ::= CREATE EVENT INSTANCE local_variable OF event_spec ;

create object_statement ::= CREATE OBJECT INSTANCE [(local_variable OF)?local_variable] OF
object_keyletters;;

delete_statement ::= DELETE OBJECT INSTANCE inst_ref_var ;

empty_statement ::=;

for_statement ::= FOR EACH local_variable IN inst_ref set var (statement)* (END FOR | Eof) ;
function_statement ::=[(local_variable | attribute_access) EQUAL] function_invocation ;
generate statement ::= GENERATE (event_spec | loca_variable) ;

if statement ::= IF expr (statement)* [(ELIF expr (statement)*)+] [ELSE (statement)*] (END IF |
Eof) ;

operation_statement := TRANSFORM [(local_variable | attribute access) EQUAL]
operation_invocation ;

relate statement ::= RELATE inst_ref_var TO inst_ref_var ACROSS relationship [DOT phrase] [USING
assoc_obj_inst_ref var];

return_statement ::= RETURN [expr] ;

select_statement ::= SELECT (ONE local_variable object_spec | ANY local_variable object_spec | MANY
local_variable object_spec) ;

unrelate statement ::= UNRELATE inst_ref_var FROM inst_ref_var ACROSS relationship [DOT phrase
][USING assoc_obj_inst_ref_var] ;

while_statement ::= WHILE expr (statement)* (END WHILE | Eof) ;

assignment_expr ::=(local_variable EQUAL)?loca_variable EQUAL expr | (attribute_access EQUAL)?
attribute_access EQUAL expr | event_data_access EQUAL expr ;

attribute access::=inst_ref_var DOT attribute ;

bridge invocation n= ee keyletters DOUBLECOLON bridge function LPAREN [
bridge or_operation_parameters] RPAREN ;

bridge or_operation_invocation ::= obj_or_ee keyletters DOUBLECOLON function_name LPAREN [
bridge_or_operation_parameters] RPAREN ;

bridge or_operation_expr ::= BRIDGE bridge invocation | TRANSFORM operation_invocation |
bridge_or_operation_invocation ;

90

Appendix C
Production Rules

bridge or_operation_parameters ::= bridge or_operation data item COLON expr (COMMA
bridge or_operation_data item COLON expr)* ;

event_data_access::= RCVD_EVT DOT supp_data item;

event_spec ::= event_label [COLON event_ meaning] [LPAREN [supp_data] RPAREN] TO (((
object_keyletters CLASS)? object keyletters CLASS | (object keyletters CREATOR)?
object_keyletters CREATOR) | (inst_ref_var_or_ee keyletters)) ;

function_invocation ::= DOUBLECOLON function_function LPAREN [function_parameters] RPAREN ;
function_parameters::=function_data_item COLON expr (COMMA function_data item COLON expr)*

inst_ref var_or_ee keyletters::=(loca_variable| GENERAL_NAME | kw_as id3) ;

instance_chain ::=local_variable (ARROW object_keyletters LSQBR relationship [DOT phrase] RSQBR
)t

object_spec ::= (RELATED BY instance _chain | FROM INSTANCES OF object_keyletters) [WHERE
expr];

param_data access::= PARAM DOT bridge or_operation_data item;
supp_data ::= supp_data_item COLON expr (COMMA supp_data_item COLON expr)* ;

operation_invocation := object _keyletters DOUBLECOLON operation_function LPAREN [
bridge_or_operation_parameters] RPAREN ;

where _spec ::=expr;

assoc_obj_inst_ref var ::=inst_ref var;

attribute ::= general_name;

bridge function ::=function_name;

bridge or_operation_data item ::= data_item_name;
data_item_name ::= general_name;

keyletters ::= general_name;

ee keyletters::= keyletters;

event_label ::= general_name;

event_meaning ::= (phrase | genera_name) ;

function_data _item ::= data item_name;

91

Object Action Language Manual

function_function ::= function_name;

general_name ::= (limited_name | GENERAL_NAME | kw_as id2 |kw_as id4) ;

limited_name::=ID |RELID ;

inst_ref set var ::=loca_variable;

inst_ref var ::=loca _variable;

kw_as idl::= ACROSS.. USING;

kw_as id2 ::= ACROSS.. TRUETOKEN;

kw_as id3::= BRIDGE .. TRUETOKEN;

kw_as id4::= PARAM .. SELF;

local_variable::= (limited name|kw_as idl | SELECTED | SELF | INVALID_CHARACTERS) ;

function_name ::= general_name;

obj_or_ee keyletters::= keyletters;

object_keyletters ::= keyletters;;

phrase ::= (PHRASE | BADPHRASE_NL | Eof) ;

relationship ;= RELID ;

supp_data _item ::= data_item_name;

operation_function ::= function_name;

expr = sub_expr ;

sub_expr ::= conjunction (OR conjunction)* ;

conjunction ::= relational_expr (AND relational_expr)* ;

relational_expr ::=addition [COMPARISON_OPERATOR addition] ;

addition ::= multiplication (PLUS_OR_MINUS multiplication)* ;

multiplication ::= boolean_negation | sign_expr (MULT_OP sign_expr)* ;

sign_expr ::=[PLUS|MINUS] term;

boolean_negation ::= NOT term ;

term ;= (CARDINALITY | EMPTY | NOTEMPTY) local_variable | rval | LPAREN ((assignment_expr
)? assignment_expr | expr) RPAREN ;

92

Appendix C
Production Rules

rval ::= constant_value | variable | attribute access | event data access | bridge or_operation_expr |
param_data access | QMARK ;

variable ::=loca_variable;
constant_value ::= (FRACTION | NUMBER | TRUETOKEN | FALSETOKEN) | quoted_string ;
quoted_string ::= QUOTE (STRING | BADSTRING_NL | Eof) ;

93

Object Action Language Manual

94

INDEX

Symbols

- 52
=54
% 52
* 52
+ 52

Across
in relate statement 36

Action
semantics 1, 3
types of 4

And 49, 50, 54
Assign
and datatyping 10

for writing 28, 30
variables 56

Assigner 44

Associative relationship
creating 37
unrelating 38

Attributes
mathematically-dependent 28, 29
reading 31
writing 28

Autosampler 6

B

Break 21
Bridge 63, 66

C

Cardinality 58

Comments 7

Constants 57

Contacting Project Technology 2
Continue 22

Create
associative instance 37
create date 71
event instance 46
object instance 25
relationship 36

Creator 44

95

Object Action Language Manual

D

Dataitems

within an action 9

Data types 10

declaration statements 10
handle set 11
instance handle 11

Delete

object instance 32
relationship 33, 38
unconditional relationship 39

Domain

E

data types specific to 10
externa entities as 64

Each 19
EBNF 89
Elif 17
Else 17
Empty

function 58
handle set 11, 41
tick marks 45

End 20
Endif 17

Event

external entities, to 44
generation 44
example 45
instance 12, 46
supplemental data 43, 44, 45, 70
example 29

Example model 6

96

Expressions
arithmetic 52
boolean 53
compound 50
string 55
where expression 55

External entity 63
and domains 64
eventsto 44

F

Failure
in relationship navigation 41

False 53
For 19
For Each 19

From instances of 26

G

Generate 47
See Events 44

H

Handle

See Instance handle and Instance handle set

If 17

Initialization
of variables 13

Index

Instance 25
creating 25
deleting 32

Instance handle 12
creation of 25
datatype 11
datatype of 'self’ 11
defined 11
empty in relationship navigation 41
existence of 58
in deleting an instance of arelationship 38
infor each 19, 20
in select 26
relating 36
self 25, 30
example usage 31, 32
within MDA actions 30

Instance handle set 12
defined 11
empty 11, 41
empty in relationship navigation 41
in for each 19
in select 26
size of 58

L

L ogical operation 54

M

Mathematically-dependent attributes 28, 29
self keyword 30

N

Namingrules 8
Not 53, 54

Not_empty 58

O

Of 25
Or 49, 50, 54

P

Param 69
Phone numbers 2
Production rules 89

Project Technology
contacting 2
website 2

R

Rcvd_evt
See Event supplemental data

Read value 13, 49, 50, 62, 63, 88
example 63

Relate 36

Related by
in select statement 40

Relationship
deletion of super/subtype 39
phrase 35
specification 35
specifications 35
unrelate 38

Relationship navigation 40
Return 68

97

Object Action Language Manual

S

Scope
control logic structures 14
definition 14

Select
any 26, 40
many 26, 40
one 40
related by 40

Selected
use in where expressions 55

Self 9, 11
datatype of 11
in relationship creation 37
in relationship navigation 38
use in create statement 25

Super/subtyperelationships
deletion of 39

Supplemental dataitem 43
in generated events 44

Syntax specification 89

T

Tick marks 35
Timer handle 12
Transform 61
True53

U

Unconditional relationship
creation of 25
deletion of 39

Unrelate 38

98

Using
in relate statement 36

V

Variableinitialization 13

W

Where clause
in select statement 26

While 20
White space 8

	Overview
	1.1 Documentation Road Map
	1.1.1 Object Action Language Manual

	1.2 Typographical Conventions
	1.3 Contacting Project Technology

	Introduction
	2.1 Purpose
	2.2 Basic Concepts
	2.3 Intended Audience
	2.4 Additional Conventions
	2.5 Examples

	Language Structure
	3.1 Overall Structure
	3.2 Comments
	3.3 Names and Keywords
	3.4 White Space

	Data Items
	4.1 Data Items Within an Action
	4.2 Modeled Elements
	4.2.1 Implicit Typing

	4.3 Local Variables
	4.3.1 Notes

	4.4 Assigning Data Types
	4.5 Variable Initialization
	4.5.1 Examples

	4.6 Scoping
	4.6.1 Notes
	4.6.2 Example

	Control Structures
	5.1 If Construct
	5.1.1 Syntax
	5.1.2 Notes
	5.1.3 Example

	5.2 For Each Loop
	5.2.1 Syntax
	5.2.2 Notes
	5.2.3 Example

	5.3 While Loop
	5.3.1 Syntax
	5.3.2 Note
	5.3.3 Example

	5.4 Break
	5.4.1 Note
	5.4.2 Example

	5.5 Continue
	5.5.1 Note
	5.5.2 Example

	5.6 Nested Control Logic
	5.6.1 Example

	Class Manipulations
	6.1 Creating Instances
	6.1.1 Syntax
	6.1.2 Notes
	6.1.3 Examples

	6.2 Selecting Instances
	6.2.1 Syntax
	6.2.2 Notes
	6.2.3 Example

	6.3 Writing Attributes
	6.3.1 Syntax
	6.3.2 Notes
	6.3.3 Example I
	6.3.4 Example II

	6.4 Writing Mathematically-Dependent Attributes
	6.4.1 Syntax
	6.4.2 Notes
	6.4.3 Example

	6.5 Reading Attributes
	6.5.1 Syntax
	6.5.2 Notes
	6.5.3 Example

	6.6 Deleting Instances
	6.6.1 Syntax
	6.6.2 Notes
	6.6.3 Example

	Relationships
	7.1 Relationship Specifications
	7.1.1 Syntax
	7.1.2 Note
	7.1.3 Examples

	7.2 Creating an Instance of a Relationship
	7.2.1 Syntax
	7.2.2 Notes
	7.2.3 Examples

	7.3 Deleting an Instance of a Relationship
	7.3.1 Syntax
	7.3.2 Notes
	7.3.3 Examples

	7.4 Relationship Navigation
	7.4.1 Syntax
	7.4.2 Notes
	7.4.3 Example I
	7.4.4 Example II

	Events
	8.1 Receiving Event Data
	8.1.1 Syntax
	8.1.2 Note
	8.1.3 Example

	8.2 Event Generation
	8.2.1 Syntax
	8.2.2 Notes
	8.2.3 Examples

	8.3 Event Pre-creation
	8.3.1 Syntax
	8.3.2 Notes

	8.4 Sending a Pre-created Event
	8.4.1 Syntax
	8.4.2 Notes

	Expressions
	9.1 Simple Expressions
	9.1.1 Syntax
	9.1.2 Example

	9.2 Compound Expressions
	9.2.1 Syntax
	9.2.2 Notes
	9.2.3 Examples

	9.3 Arithmetic Expressions
	9.3.1 Syntax
	9.3.2 Note
	9.3.3 Examples

	9.4 Boolean Expressions
	9.4.1 Syntax
	9.4.2 Note
	9.4.3 Examples

	9.5 String Expressions
	9.5.1 Syntax
	9.5.2 Examples

	9.6 Where Expressions
	9.6.1 Note
	9.6.2 Examples

	9.7 Assignment of Variables
	9.7.1 Syntax
	9.7.2 Notes
	9.7.3 Examples

	9.8 Constants
	9.8.1 Syntax
	9.8.2 Notes

	9.9 Additional Unary Operators
	9.9.1 Syntax
	9.9.2 Notes
	9.9.3 Example

	Operations, Bridges, and Functions
	10.1 Operation Invocation
	10.1.1 Syntax
	10.1.2 Notes
	10.1.3 Example

	10.2 Bridge Invocation
	10.2.1 Syntax
	10.2.2 Notes
	10.2.3 Example
	10.2.4 Avoiding Ambiguity in Invocations

	10.3 Function Invocation
	10.3.1 Syntax
	10.3.2 Notes
	10.3.3 Example

	10.4 Object Action Language for Invocations
	10.4.1 Return Statement
	10.4.2 Parameters
	10.4.3 Use of self keyword
	10.4.4 Other Differences

	Date and Time
	11.1 External and Internal Time
	11.1.1 External Time
	11.1.2 Internal Time

	Timers
	12.1 Starting a Timer
	12.1.1 Syntax
	12.1.2 Example

	12.2 Querying a Timer
	12.2.1 Syntax

	12.3 Manipulating a Timer
	12.3.1 Syntax

	12.4 Canceling a Timer
	12.4.1 Syntax
	12.4.2 Notes

	References
	A.1 References

	Keywords
	B.1 Keywords

	Syntax Summary
	C.1 Language Constructs
	C.1.1 Control Logic
	C.1.2 Instance Creation
	C.1.3 Instance Selection
	C.1.4 Writing Attributes
	C.1.5 Reading Attributes
	C.1.6 Instance Deletion
	C.1.7 Creating Instances of a Relationship
	C.1.8 Deleting Instances of a Relationship
	C.1.9 Instance Selection by Relationship Navigation
	C.1.10 Creating Events
	C.1.11 Generating Events
	C.1.12 Accessing Event Data
	C.1.13 Arithmetic, Logical, and String Assignment
	C.1.14 Unary Operators
	C.1.15 Operations
	C.1.16 Bridges
	C.1.17 Functions
	C.1.18 Object Action Language for Non-State Actions
	C.1.19 Date and Time
	C.1.20 Timers

	C.2 Statement Components
	C.3 Production Rules

	Index

