
Object Action LanguageTM Manual

Document Version: 1.4

Object Action LanguageTM Manual

BridgePoint is a registered trademark of Project Technology, Inc. and its licensors. Object Action Language is a
trademark of Project Technology, Inc. UML is a trademark of The Object Management Group.

All other products or services mentioned in this document are identified by the trademark, service marks, or products
names as designated by the companies who market these products.

Corporate Headquarters
Project Technology, Inc.

7400 North Oracle Road, Suite 365
Tucson, AZ 85704-6342

United States

toll-free: (800) 845-1489
voice: +1 (520) 544-2881
fax: +1 (520) 544-2912

email: info@projtech.com
web: www.projtech.com

Support
email: support@projtech.com

toll-free: (800) 482-3853
voice: +1 (520) 544-0808
fax: +1 (520) 544-2912

web: www.projtech.com/support

i

CONTENTS

1 Overview ... 1

1.1 Documentation Road Map .. 1

1.2 Typographical Conventions... 1

1.3 Contacting Project Technology... 2

2 Introduction.. 3

2.1 Purpose.. 3

2.2 Basic Concepts.. 4

2.3 Intended Audience .. 5

2.4 Additional Conventions... 5

2.5 Examples... 6

3 Language Structure ... 7

3.1 Overall Structure ... 7

3.2 Comments ... 7

3.3 Names and Keywords.. 7

3.4 White Space .. 8

ii

Object Action Language Manual

4 Data Items... 9

4.1 Data Items Within an Action... 9

4.2 Modeled Elements... 10

4.3 Local Variables.. 11

4.4 Assigning Data Types ... 12

4.5 Variable Initialization.. 13

4.6 Scoping.. 14

5 Control Structures ... 17

5.1 If Construct ... 17

5.2 For Each Loop... 19

5.3 While Loop ... 20

5.4 Break ... 21

5.5 Continue .. 22

5.6 Nested Control Logic .. 23

6 Class Manipulations... 25

6.1 Creating Instances ... 25

6.2 Selecting Instances.. 26

6.3 Writing Attributes ... 28

6.4 Writing Mathematically-Dependent Attributes... 29

6.5 Reading Attributes .. 31

6.6 Deleting Instances ... 32

Contents

iii

7 Relationships .. 35

7.1 Relationship Specifications... 35

7.2 Creating an Instance of a Relationship ... 36

7.3 Deleting an Instance of a Relationship ... 38

7.4 Relationship Navigation.. 40

8 Events .. 43

8.1 Receiving Event Data.. 43

8.2 Event Generation... 44

8.3 Event Pre-creation... 46

8.4 Sending a Pre-created Event ... 47

9 Expressions ... 49

9.1 Simple Expressions ... 49

9.2 Compound Expressions... 50

9.3 Arithmetic Expressions ... 52

9.4 Boolean Expressions ... 53

9.5 String Expressions... 55

9.6 Where Expressions.. 55

9.7 Assignment of Variables ... 56

9.8 Constants... 57

9.9 Additional Unary Operators.. 58

iv

Object Action Language Manual

10 Operations, Bridges, and Functions ... 61

10.1 Operation Invocation... 61

10.2 Bridge Invocation.. 63

10.3 Function Invocation... 66

10.4 Object Action Language for Invocations .. 68

11 Date and Time .. 71

11.1 External and Internal Time.. 71

12 Timers ... 73

12.1 Starting a Timer... 73

12.2 Querying a Timer .. 74

12.3 Manipulating a Timer.. 75

12.4 Canceling a Timer ... 76

A References... 77

A.1 References... 77

B Keywords .. 79

B.1 Keywords .. 79

C Syntax Summary.. 81

C.1 Language Constructs... 81

C.2 Statement Components ... 88

C.3 Production Rules ... 89

D Index.. 95

1

1
OVERVIEW

.

1.1 Documentation Road Map

1.1.1 Object Action Language Manual

The Object Action Language Manual details an action language that realizes the action
semantics specification for UML as of version 1.5. Please check the OMG website for the
latest UML specification.

The Object Action Language described here is fully supported by the BridgePoint
Development Suite.

1.2 Typographical Conventions
The following typographical conventions are used throughout this document. A different font
is used to bring attention to different textual elements:

command Denotes a command as it should be typed in, a file
name, or a class name.

<value> Denotes a value supplied by the user including
command-line parameters or directory paths.

Start | Programs Indicates a sequence of menu selections or series of
buttons to be selected under the windowing
environment.

Document Refers to documents outside the current one.

2

Object Action Language Manual

See “Section” Refers to a section or subsection in the current
document.

1.3 Contacting Project Technology
The following lines of communication can be used to contact Project Technology:

You can also visit our web site at www.projtech.com.

Phone Fax E-mail

PT Sales +1 (520) 544-2881
(800) 845-1489

+1 (520) 544-2912 sales@projtech.com

PT Support +1 (520) 544-0808
(800) 482-3853

+1 (520) 544-2912 support@projtech.com

3

2
INTRODUCTION

2.1 Purpose
The purpose of this manual is to serve as a reference and general user’s guide to aid in the
correct specification of action semantics for UML models. Although originally designed for
models used with the BridgePoint Development Suite, the language described herein can be
used to define the action semantics for any UML model in any tool.

The Object Action LanguageTM is written to satisfy the following goals:

• Readability - Modelers must be able to easily understand the OAL for develop-
ment and reviews.

• Derivation - Event generation and data access information is captured for deri-
vation of the Object Collaboration Diagrams and Package Dependency
Diagrams for both asynchronous (event) and synchronous (data access)
communication.

• Simulation - The UML models can be simulated through interpretation of the
actions by using the Model Verifier tool.

• Translation - Richness of expression is provided while maintaining a specifica-
tion that can be automatically translated onto a target architecture.

4

Object Action Language Manual

2.2 Basic Concepts
The Object Action LanguageTM (OAL) is used to define the semantics for the processing that
occurs in an action. An action can be associated with the following five modeled elements:

• states

• bridge operations

• functions

• class and instance-based operations

• mathematically-dependent attributes

The Object Action Language provides for five types of action processes:

• data access

• event generation

• test

• transformation

• bridge and function

It supports these through:

• control logic

• access to the data described by the class diagram

• access to the data supplied by events initiating actions

• the ability to generate events

• access to timers and to the current time and date

In a UML model, unlike conventional programming, there is no concept of a "main" function
or routine where execution starts. Rather, the models are executed in the context of a number
of interacting finite state machines, all of which are considered to be executing concurrently.
Any state machine, upon receipt of an event (from another state machine or from outside the
system) may respond by changing state. On entry to the new state, a block of processing (an

Chapter 2
Intended Audience

5

"action") is performed. This processing can in principle execute at the same time as process-
ing associated with another state machine. (Whether this occurs in practice depends on the
nature of the software and hardware architectures used to implement the system.)

The Object Action Language is used to define the processing executed during the action. The
execution rules are as follows:

• Execution commences at the first statement in the action and proceeds sequen-
tially through the succeeding lines as directed by any control logic structures.

• Execution of the action terminates when the last statement is completed.

These rules also apply to actions defined for bridge operations, functions, class and instance-
based operations, and mathematically-dependent attributes.

2.3 Intended Audience
This manual is written for modelers and software engineers who use a process and set of
modeling tools that support the creation, simulation, and translation of UML models. Specif-
ically, guidance is provided for the correct specification of actions formulated in the syntax
of the Object Action Language.

The following section provides guidance on using this manual to meet these needs.

2.4 Addit ional Conventions
Although future versions of the most tools will support models created under previous
releases, this manual is annotated with three special symbols to indicate preferred usage in
the light of future development.

� Indicates a preferred construct or recommended use for a given construct.

� Indicates a feature that should be used only in the limited manner described in this man-
ual. If the feature is used for other purposes, it is unlikely to convert properly in future
releases or translate correctly onto some architectures.

� Marks a form or capability that is included in this release only for experimental reasons
or for backward compatibility. The capability may not be supported in future releases of
tools.

6

Object Action Language Manual

2.5 Examples
There are examples presented throughout this manual. Much of the OAL in these examples
was extracted from a complete model of a real-world device (an auto-sampler used for chem-
ical testing). The complete model is available on the Project Technology web site:

www.projtech.com/prods/bp/autosamp.html

This model is intentionally simplistic in nature to make it easy to understand. Its purpose is to
illustrate as many aspects of the OAL constructs as possible. It should, therefore, not be con-
strued an example of good modeling practices as several compromises have been made in the
interest of simplicity.

In many cases the examples from the auto-sampler model are augmented with additional,
contrived examples in an effort to provide further illustrations of the OAL construct in ques-
tion. As with any contrived examples, these sequences of OAL are provided as examples of
the syntax for the language and not as examples of valid modeling techniques for real world
applications.

7

3
LANGUAGE STRUCTURE

3.1 Overal l Structure
An action consists of a number of statements. Each statement can be either a simple
statement (such as an access to the attributes of a class) or a control logic structure (such as
an if construct).

OAL statements are terminated by a semi-colon except following the if, for each, and
while control constructs, described later.

3.2 Comments
Comments may be inserted by the use of the // characters at any point in the line. When this
pair of characters is detected, the remainder of the line (up to the new-line character) is
considered to be a comment and is ignored.

3.3 Names and Keywords
OAL statements are composed of:

• keywords (See "Appendix B: Keywords".)

• logical and arithmetic operations

• names of modeled elements (classes, attributes, class and external entity
keyletters, relationship numbers and phrases, event labels and meanings, and
supplemental data items)

• local variables

8

Object Action Language Manual

Keywords may be represented in all upper case, all lower case, or with the first character
upper case and all other characters in lower case.

Names in OAL statements must conform to the following rules:

1. Names are case sensitive. This includes local variables, keyletters, class
attributes, and event identifiers.

2. Names must not begin with a numeric character [0-9].

3. A relationship phrase (’is owned by’) or event meaning (’turn off pump’)

• may contain any ASCII characters.

• must be enclosed by tick marks.1

• must be contained on a single line.

4. Class keyletters, event labels, and attribute names may contain only the
characters [a-z][A-Z][0-9][_#]. Spaces are not permitted.

3.4 White Space
White space (spaces and tabs) may be inserted at any point in an OAL statement other than:

• within a name or keyword,

• between two consecutive colons, or

• between the characters of a comparison operator.

1. The tick marks may be omitted from an event meaning if it contains no spaces.

9

4
DATA ITEMS

4.1 Data I tems Within an Action
The OAL expression of an action has access to and can produce certain data items. The
following data items are available to be read at the start of and throughout an action:

• constants

• values of attributes of classes

• supplemental data items carried by the event that initiated the action

• local variables (created by statements within the action)

These data items can be produced during an action:

• local variables

• values of attributes of classes

• supplemental data items to be carried by an event generated during the action

Finally, the instance handle self may be used to refer to the currently executing instance in
an instance statechart (but not in a class statechart), to an instance in an instance-based
operation, and to the instance of a mathematically-dependent attribute.

10

Object Action Language Manual

4.2 Modeled Elements
All data items referenced or produced by an action must have a data type. The following data
types are defined for class attributes, supplemental data items of an event, and local
variables.

The analyst may also define domain-specific data types based upon these data types.

Data types within the OAL are "analysis" data types, and reflect only the set of legal values a
variable can take on.

4.2.1 Implicit Typing

There are no type declaration statements in the OAL. All data items are implicitly typed by
the value assigned to them on their first use within an action.

integer string unique ID � timer handle

real date instance handle ��event instance

boolean timestamp instance handle set � statea

a. In the OOA-96 Report, the current state attribute is entirely under the control of
the architectural domain and is not available to the analyst; as a result, in future
versions this data type will no longer be needed.

Table 4-1: Object Action Language Data Types

Chapter 4
Local Variables

11

4.3 Local Variables
Local variables can be of any of the data types listed in "Assigning Data Types" on page 12.
Two of these types require special consideration:

instance handle The identification of an instance of a class. The
implementation of this type is entirely dependent on the
architecture; hence, its form is unknown to the user of the
OAL.

instance handle set A set of instance handles.

Because instance handles and instance handle sets are obtained by selection from existing
instances, the following situations can arise: (1) a local variable of type instance handle may
not contain a valid reference to an instance, and (2) a local variable of type instance handle
set may refer to an empty set. These situations can be detected by using the supplied unary
set operators.

4.3.1 Notes

Attributes cannot be of type instance handle or instance handle set.

Strictly speaking, a local variable is not of type instance handle, but rather of type instance
handle for a particular class. Any attempt to use an instance handle for one class in the
context of another is an error.

In any action within an instance statechart, a special instance handle called self is always
available. Self is always defined as a handle to the instance of the class that is executing the
current action. The value of self cannot be changed by an action.

The instance handle self has no meaning inside of an action for a class-based operation, a
bridge operation, or a function. Self is not defined for a class statechart.

In any action within an instance-based operation or mathematically-dependent attribute,
self is always available. Self is always defined as an instance handle to the instance of a
class against which the operation is being executed, or the instance for which the attribute is
being read. The value of self cannot be changed by an action.

12

Object Action Language Manual

4.4 Assigning Data Types
The data type names used in this manual have been chosen for readability. The table lists the
correspondences between the data type names used here and in BridgePoint Model Builder.

in this manual in Model Builder

integer integer

real real

boolean boolean

string string

date date

timestamp timestamp

unique ID unique_ID

state state<State_Model>

timer handle inst_ref<Timer>

instance handle inst_ref<Object>

instance handle set inst_ref_set<Object>

event instance inst<event>

Table 4-2: Names of data types used in this manual and their corresponding names used in the
BridgePoint Model Builder.

Chapter 4
Variable Initialization

13

4.5 Variable Init ial ization
Some situations arise where a variable may possibly be declared without being assigned a
value. An obvious situation where this occurs is when an instance of a class with attributes is
created. Though the attributes should not be accessed before they are assigned, there is
nothing preventing the user from attempting to do so.

For the purposes of the Model Verifier, unassigned variables are considered UNDEFINED.
The user should not intentionally read the data from UNDEFINED variables.

For the purposes of the translated code, the value of unassigned variables lies entirely in the
realm of the software architecture defined by the model compiler. Even so, use of an
unassigned variable as a read value or in an expression should be avoided.

4.5.1 Examples

// Reading an uninitialized attribute
create object instance d of DOG; // Attributes of d are not initialized
dog_name = d.name; // Error! Cannot read uninitialized value

// Using an uninitialized instance reference
select many f_set from instances of fish; // Select an empty instance set
for each f in f_set

// statement block
end for;
// Instance reference f is available in this scope
// and may be uninitialized if f_set was empty.
fish_type = f.type; // Warning! f may be uninitialized.

14

Object Action Language Manual

4.6 Scoping
The scope of a variable is defined as the block of code in which the variable may be accessed.
A block of code can be the entire OAL for the given action, or it may be a <statements>
block within a control logic structure.

Each control logic structure contains at least one new scope. All variables that were
accessible in the scope containing the structure are also accessible in the block or blocks
contained by the structure, essentially causing the contained scopes to inherit variables from
the parent scope. Any variables declared within a given control logic block fall out of scope
when execution exits the block.

Control logic structures may contain multiple scopes, either by repeated nesting of new
structures or by using the elif or else constructs in an if structure. When nesting of control
logic is used, each new structure defines a new scope. In an if statement, each elif or else
structure contained within the if block defines a new scope, and each new scope inherits the
scope of the block containing the if statement.

4.6.1 Notes

A local variable is implicitly declared at the moment it is assigned, with a scope limited to the
current block.

Local variables have a maximum scope of the entire OAL for the current action.

In the for statement, the local variable declared by <instance handle> has the same scope
as the block containing the for statement.

The where clause has a special variable, selected, that has scope limited to the <where
expression>.

The scope of self for an instance’s action, operation, or attribute, is the entire OAL for the
current action.

Chapter 4
Scoping

15

4.6.2 Example

// begin action
// scope1 - global scope for this action. Variables declared here
// are accessible anywhere in this action.
delta = self.destination - self.current_position;
if (delta == 0)

// scope2 - Variables declared here are only accessible
// within if statement.
spin_spot = CARPIO::carousel_spin(car_id:self.carousel_ID);

end if; // All variables declared in scope2 are not accessible
 // after the end if.
select many rows from instances of ROW;
for each row in rows

// scope3 - Variables declared here are only accessible within
// for each statement.
st = row.sampling_time;

end for; // All variables declared in scope3 are not accessible after
 // the end for.
// row is available in the scope containing the for each statement
// (scope1).

if (delta <= 2)
// scope4 - Variables declared here are accessible within this
// if block and in scope4.1 and scope4.2.
if (CARPIO::angle(car_id:self.carousel_ID) == 30)

// scope4.1 - Variables declared here are only accessible
// within this if block.

end if;
if (CARPIO::angle(car_id:self.carousel_ID) == 60)

// scope4.2 - Variables declared here are only accessible within
// this if block.

end if;
end if;
// end action

16

Object Action Language Manual

17

5
CONTROL STRUCTURES

5.1 If Construct

5.1.1 Syntax

// Note that there is no semi-colon following the
// "if <boolean expression>"
if <boolean expression>

<statements> // Executed if <boolean expression> is TRUE
end if;

if (<boolean expression>)
<statements> // Executed if above boolean expression evaluates to TRUE

elif (<boolean expression>)
<statements> // Executed if above boolean expression evaluates to TRUE

 // and previous boolean expression is FALSE
else

<statements> // Executed if both boolean expressions evaluate to FALSE
end if;

<boolean expression> is an expression evaluating to TRUE or FALSE.

5.1.2 Notes

The if construct may contain as many elif clauses as desired.

Only one else clause may be used, and it must appear at the end of the if construct.

18

Object Action Language Manual

5.1.3 Example

The following example shows an if/elif/else construct:

// Assign x with a different number for each name.
if (name == "John")

x = 1;
elif (name == "Bill")

x = 2;
elif (name == "Michael")

x = 3;
else

// If not a known name, assign x to 4.
x = 4;

end if;

This example shows nested if constructs:

// Carousel: Going
self.destination = rcvd_evt.destination;
delta = self.destination - self.current_position;
if (delta == 0)

generate C2:there to self;
else

select any probe from instances of SP
where (selected.current_position == "down");
if (not_empty probe)

generate C2:there to self;
else

spin_spot = CARPIO::carousel_spin(
car_id:self.carousel_ID, destination:delta);

end if;
end if;

Chapter 5
For Each Loop

19

5.2 For Each Loop
The for each loop allows for the iteration over a set of instance handles in an instance handle
set.

5.2.1 Syntax

for each <instance handle> in <instance handle set> // Note no semi-colon
<statements>

end for;

<instance handle> is a local variable referring to a single instance.

<instance handle set> is a local variable referring to a set of instance handles.

5.2.2 Notes

The statements in the for each construct are executed once against each instance in
<instance handle set>.

The order in which the particular instances are processed is undefined.

� Because the statements in the for each construct can, in principle, be executed in parallel
(as when instances are dispersed over multiple processors), the concept of a loop counter is
undefined. Consequently, the analyst should not attempt to defeat this restriction.

5.2.3 Example

// C is the keyletter for the Child object.
// children is an implicitly typed variable of <instance handle set> of C.
select many children from instances of C;
for each child in children

generate C1:’time for bed’ () to child;
end for;

20

Object Action Language Manual

5.3 While Loop
The while construct is used to sequentially execute the code it contains for as long as the
condition is evaluated as TRUE.

5.3.1 Syntax

while (<boolean expression>) // Note no semi-colon
<statements>

end while;

<boolean expression> is an expression evaluating to TRUE or FALSE

<statements> are zero or more OAL statements.

5.3.2 Note

When the while loop is executed, the statements in the while construct are executed
consecutively as long as the <boolean expression> evaluates to TRUE.

5.3.3 Example

// Create 20 doors with IDs 1-20
i = 1;
while (i <= 20)

create object instance d of DOOR;
d.ID = i;
i = i + 1;

end while;

Chapter 5
Break

21

5.4 Break
The break statement allows the early termination of both for each and while loops. This
can have some significant performance implications in the case of large loops that need not
step through the entire iteration.

5.4.1 Note

The break statement only applies to the current for each or while loop containing it. To
break out of nested loops, the break must be repeated for each loop construct the user wishes
to exit.

5.4.2 Example

// Create and relate a B to every A while CTL says to keep
// creating.
while (CTL::create())

breakout = FALSE;
for each a in aset

// If this a has name equal to "Jeff", break out of
// for each loop.
if (a.name == "Jeff")

breakout = TRUE;
break;

end if;
// Create and relate a new b to the given a.
create object instance b of B;
relate b to a across R1;

end for;
// If "Jeff" was found, break out of while loop also.
if (breakout)

break;
end if;

end while;

22

Object Action Language Manual

5.5 Continue
The continue statement causes the next iteration of the enclosing for each or while loop to
begin, avoiding execution of the loop’s remaining code.

5.5.1 Note

The continue statement only applies to the current loop containing it.

5.5.2 Example

// Create and relate a B to each A, except for As with ID of 13.
for each a in aset

// If a.ID is 13, don’t create and relate a B to it and
// continue to the next.
if (a.ID == 13)

continue;
end if;
create object instance b of B;
relate b to a across R1;

end for;

Chapter 5
Nested Control Logic

23

5.6 Nested Control Logic
Control logic may be nested to any depth.

5.6.1 Example

// Send a ’time for bed’ event to all children 5 and under.
select many children from instances of C;
for each child in children

if (child.age <= 5)
while (child.awake)

generate C1:’time for bed’ () to child;
if (not lights.out)

generate C2:’turn off lights’ () to child;
end if;

end while;
end if;

end for;

24

Object Action Language Manual

25

6
CLASS MANIPULATIONS

6.1 Creating Instances
Creation of an instance of a class is achieved by use of the create statement.

6.1.1 Syntax

create object instance <instance handle> of <keyletter>;
create object instance of <keyletter>;

<keyletter> is the keyletter of a class in the model.

6.1.2 Notes

The <instance handle> returned is the handle of the newly created instance of class
<keyletter>. The handle can be used only to refer to an instance of class <keyletter>.

The <instance handle> in the create statement cannot be self.

The value of all identifying attributes must be set by the analyst before completion of the
action in which an instance is created. Note that identifying attributes of type unique ID
cannot be assigned values, as they are initialized by the system.

� All unconditional relationships that involve the newly created instance should be satisfied
before completing the action in which the instance is created. This can be done either by
directly relating the associated instance or by generating an event that will cause the newly
created instance to be properly related.

26

Object Action Language Manual

6.1.3 Examples

// Create instances of autosampler classes
create object instance car of C;
create object instance row of ROW;

create object instance of SP; // no instance handle needed

6.2 Selecting Instances
The select statement can be used to assign an instance or set of instances to either an
instance handle or a instance handle set respectively. An optional where clause can be used
at the end of the select statement to limit the selection. Within the where clause, the
selected instance handle refers to each of the instances in the entire set defined by
<keyletter>. The instance handle selected is meant to be used as an instance handle in a
boolean comparison to form the where expression. The instance or set of instances returned
match the criteria of the where expression, and may be empty.

6.2.1 Syntax

select any <instance handle> from instances of <keyletter>;
select many <instance handle set> from instances of <keyletter>;
select any <instance handle> from instances of <keyletter> where <where
expression>;
select many <instance handle set> from instances of <keyletter> where
<where expression>;

<instance handle> is the handle for an instance of the class specified by <keyletter>.

<instance handle set> is a set of handles for all selected instances of the class specified by
<keyletter>.

<where expression> is a type of boolean expression using selected keyword.

Chapter 6
Selecting Instances

27

6.2.2 Notes

If the optional where clause is used, the returned instance or set of instances meet the criteria
of the where expression. This implies that the instance handle may be empty, or the instance
handle set may be empty if no instance fulfills the criteria.

If the select any form is used, an arbitrary instance will be obtained from the selected set.

If the select many form is used then the entire set of instances will be obtained.

If the select any ... where form is used, an arbitrary instance that fulfills the <where
expression> will be obtained.

If the select many ... where form is used then the set of instances that fulfill the <where
expression> will be obtained.

The instance handle selected is valid only within <where expression>.

6.2.3 Example

// Select an arbitrary instance.
select any dp_one from instances of DP;

// Select all instances.
select many dp_set from instances of DP;

// Select an instance of DP whose available attribute is TRUE.
select any dp_avail from instances of DP where selected.available == TRUE;

// Select a set of instances from DP whose available attribute is FALSE.
select many dp_unavail_set from instances of DP

where selected.available == FALSE;

Making selections across relationships is describe in "Relationship Navigation" on page 40.

28

Object Action Language Manual

6.3 Writ ing Attr ibutes
Attributes of instances may be set to specified values by use of the assign statement.

6.3.1 Syntax

[assign] <instance handle>.<attribute> = <expression>;

<instance handle> is a handle to an instance of a class.

<attribute> is the name of an attribute of the class.

<expression> is either a boolean, string, or arithmetic expression.

The assign statement takes the value in <expression> and assigns it to the attribute
<attribute> for the instance specified by <instance handle>.

The assign keyword is optional.

6.3.2 Notes

The <expression> must evaluate to the data type of <attribute>, unless <attribute> is
either a real or an integer, in which case <expression> can be either a real or integer value.

A value cannot be assigned to a referential attribute. Relationships must be maintained via
the relate and unrelate constructs.

A value cannot be assigned to an attribute of type unique ID, as such an attribute is initialized
by the system when the instance is created.

Mathematically-dependent attributes cannot be written to, only read. The value of a
mathematically-dependent attribute must be set within the action of the attribute. See
"Writing Mathematically-Dependent Attributes" on page 29.

Chapter 6
Writing Mathematically-Dependent Attributes

29

6.3.3 Example I

// Account is a class with attributes branch, account_number,
// and balance. Assume new_account, this_branch, and initial_deposit
// are event supplemental data items.

// First, create a new instance.
create object instance my_account of ACCT;

// Now set attribute values using the returned instance handle.
my_account.branch = rcvd_evt.this_branch;
my_account.account_number = rcvd_evt.new_account;
my_account.balance = rcvd_evt.initial_deposit;

6.3.4 Example II

// Create and initialize a row in the autosampler carousel.
create object instance row of ROW;
relate row to car across R1;
row.radius = 10;
row.current_sampling_position = 0;
row.maximum_sampling_positions = 5;
row.sampling_time = 5000;
row.needs_probe = false;

6.4 Writ ing Mathematically-Dependent
Attr ibutes

Mathematically-dependent attributes are attributes that have their value derived from other
modeled elements. It is not possible to directly write to a mathematically-dependent attribute
as described above. Instead, OAL must be used to specify the derived value. When the
attribute is read in an action, the value of the attribute is calculated from the OAL specified in
the action for the mathematically-dependent attribute.

30

Object Action Language Manual

6.4.1 Syntax

From within the action of a mathematically-dependent attribute:

[assign] self.<attribute> = <expression>;

<attribute> is the name of the mathematically-dependent attribute.

<expression> is either a boolean, string, or arithmetic expression.

The assign statement takes the value in <expression> and assigns it to the attribute
<attribute> for the instance specified by self.

The assign keyword is optional.

6.4.2 Notes

The <expression> must evaluate to the data type of <attribute>, unless <attribute> is
either a real or an integer, in which case <expression> can be either a real or integer value.

A value cannot be assigned to a referential attribute. Relationships must be maintained via
the relate and unrelate constructs.

A value cannot be assigned to an attribute of type unique ID, as such an attribute is initialized
by the system when the instance is created.

The action parsing routine for attributes checks to see if the variable self is written
somewhere in the state action, and if not, a parse error is reported.

Care should be taken to make sure that all paths inside an action actually set the attribute.

The param and return keywords are not supported in the action of the attribute.

Chapter 6
Reading Attributes

31

6.4.3 Example

// Mathematically-dependent attribute (MDA) action
self.volume = self.length*self.width*self.height;

// Action reading the MDA volume
v = cube.volume;

6.5 Reading Attr ibutes
A class attribute may be referenced in an expression using the form:

6.5.1 Syntax

<instance handle>.<attribute>

<instance handle> is a handle to an instance of a class.

<attribute> is the name of an attribute of the class.

6.5.2 Notes

You may read the value of any attribute, including referential attributes.

<instance handle>.<attribute> is an expression and can be used in any OAL construct
specifying an expression.

� When you wish to obtain an associated instance, use the relationship navigation constructs
rather than reading (a succession of) referential attributes. This ensures that code generators
can detect the purpose of the read and therefore produce accurate and effective translation.

32

Object Action Language Manual

6.5.3 Example

// Create new instance and get handle.
Create object instance myrobot of R;
// Use the instance handle to read attribute values.
myx = myrobot.x_position;
myy = myrobot.y_position;

// Position the row for sampling.
select one car related by self->C[R1];
self.next_sampling_position = self.current_sampling_position + 1;
next =

ROW::convert_dest(radius:self.radius,
next_sampling_position:self.next_sampling_position);

generate C1:go(destination:next) to car;

6.6 Deleting Instances

6.6.1 Syntax

delete object instance <instance handle>;

6.6.2 Notes

This statement deletes the instance specified by <instance handle>.

When an instance of a class is deleted, it is no longer available to the domain where the class
is defined. However, sophisticated software architectures can be imagined which support the
notion that the instance is kept for logging purposes although the defining domain cannot see
it.

Chapter 6
Deleting Instances

33

� Depending on the architecture, deleting an instance may or may not be sufficient to
specify deletion of any attached relationships. Because certain architectures may fail if such
dangling relationships are used at run time, we recommend that the analyst explicitly delete
relationships before deleting the participating class instances.

6.6.3 Example

// Delete every instance of DG with name equal to Fido.
select many dogs from instances of DG where (selected.name == "Fido");
for each dog in dogs

select one owner related by dog->OWN[R23];
unrelate dog from owner;
delete object instance dog;

end for;

34

Object Action Language Manual

35

7
RELATIONSHIPS

7.1 Relationship Specif ications
A relationship specification identifies exactly which relationship is required to be created,
navigated, or deleted.

7.1.1 Syntax

R<number>
r<number>
R<number>.<relationship phrase>
r<number>.<relationship phrase>

<number> the number of the relationship as shown on the class diagram.(e.g., R1).

<relationship phrase> is the text that appears at the destination end of the relationship,
enclosed in tick marks and contained on a single line.

7.1.2 Note

Either R or r may be used when referring to a relationship.

36

Object Action Language Manual

7.1.3 Examples

r5
R10.’owns’
r10.’is owned by’
R22.’uses’
R1.’Is rotated by’
R1.’Contains’
R2.’Is assigned to’

7.2 Creating an Instance of a Relat ionship

7.2.1 Syntax

relate <source instance handle> to <destination instance handle> across
<relationship specification>;

relate <source instance handle> to <destination instance handle> across
<relationship specification> using <associative instance handle>;

<source instance handle> is the handle of the first class instance to be related.

<destination instance handle> is the handle of the second class instance to be related.

<relationship specification> is the specification of the relationship from the source class
to the destination class. This can be any of the forms described in the previous section.

<associative instance handle> is the handle of an existing class instance that is used as the
associative class instance for this relationship instance.

Chapter 7
Creating an Instance of a Relationship

37

7.2.2 Notes

The relationship specification should be framed as if navigating from source class to
destination class.

The source, destination, and associative instance handles may be self.

If an attempt is made to relate two instances via the same relationship more than once, this is
regarded as a run time error by the BridgePoint Model Verifier unless the relationship is (M:
M)-M.

The using <associative instance> form is used when an associative relationship is being
instantiated. The associative instance must have already been created before the relationship
is instantiated.

7.2.3 Examples

select any dp_inst from instances of DP;
select any d_inst from instances of D;
relate dp_inst to d_inst across R1;

select any a_inst from instances of A;
select any b_inst from instances of B;
create object instance c_inst of C;
relate a_inst to b_inst across R1 using c_inst;

// State 3. "Assigning Probe to Row"
select any row from instances of ROW

where (selected.needs_probe == true);
select any probe from instances of SP

where (selected.available == true);
probe.available = false;
row.needs_probe = false;
create object instance assignment of PA;
relate row to probe across R2 using assignment;
generate PA_A3:probe_assigned() to PA class;
generate ROW2:probe_assigned() to row;

38

Object Action Language Manual

7.3 Deleting an Instance of a Relat ionship

7.3.1 Syntax

unrelate <source instance handle> from <destination instance handle> across
<relationship specification>;

unrelate <source instance handle> from <destination instance handle> across
<relationship specification> using <associative instance handle>;

<source instance handle> is the handle of the first class instance to be unrelated.

<destination instance handle> is the handle of the second class instance to be unrelated.

<relationship specification> is the specification of the relationship from the source to
the destination class.

<associative instance handle> is the handle of the associative class instance that captures
the relationship instance.

7.3.2 Notes

The relationship specification should be framed as if navigating from the source class to the
destination class.

An attempt to unrelate two instances that are not related by the specified relationship is
regarded as a run time error by the BridgePoint Model Verifier.

The source, destination, and associative instance handles may be self.

� If an associative relationship is unrelated then the associative class instance(s) will not be
deleted. The analyst must specify this explicitly.

Chapter 7
Deleting an Instance of a Relationship

39

� If an unconditional relationship is deleted, instances of participating classes will not
automatically be deleted to remain consistent with the Class Diagram. It is the responsibility
of the analyst to ensure that the Class Diagram is respected. This applies equally to super/
subtype relationships.

7.3.3 Examples

unrelate a_inst from b_inst across R1;
unrelate a_inst from b_inst across R1 using c_inst;
delete object instance c_inst;

40

Object Action Language Manual

7.4 Relationship Navigation
Relationship navigation is the function whereby relationships specified on the Class Diagram
are read in order to determine the instance or set of instances that are related to an instance of
interest.

7.4.1 Syntax

select one <instance handle> related by <start> -> <relationship link> ->
... <relationship link>;

select any <instance handle> related by <start> -> <relationship link> ->
... <relationship link>;

select many <instance handle set> related by <start> -> <relationship link>
-> ... <relationship link>;

select one <instance handle> related by <start> -> <relationship link> ->
... <relationship link> where <where expression>;

select any <instance handle> related by <start> -> <relationship link> ->
... <relationship link> where <where expression>;

select many <instance handle set> related by <start> -> <relationship link>
-> ... <relationship link> where <where expression>;

<start> is an <instance handle set> or <instance handle> obtained from a previous
select statement.

<relationship link> is a <keyletter>[<relationship specification>], where the
square brackets are literal and do not indicate optional text.

<keyletter> is the keyletter of the class reached by the specified relationship.

<relationship specification> is the specification of the relationship from the source
to the destination class.

<where expression> is a type of boolean expression using the selected keyword.

Chapter 7
Relationship Navigation

41

7.4.2 Notes

A relationship link chain is the sequence of <relationship link>’s used to specify the path
from the starting instance or set of instances to the destination.

Use the select one form if at most one instance handle can be returned by navigating the
relationship link chain.

Use the select any or select many form if more than one instance handle can be returned
by navigating the relationship link chain. Select any returns a single instance, and select
many returns all instances that meet the selection criteria.

The select any form returns the instance handle of an arbitrary instance of the class at the
end of the relationship link chain.

The select many form returns an instance handle set containing all the instances of the class
at the end of the relationship link chain.

The select any ... where form returns the instance handle of an arbitrary instance of the
class at the end of the relationship link chain that fulfills the <where expression> criteria.

The select many ... where form returns an instance handle set containing all the instances
of the class at the end of the instance chain that fulfill the <where expression> criteria.

The relationship phrases in the relationship link chain must be given in the direction of
navigation.

If the starting <instance handle> or <instance handle set> is empty, then the result will
be considered a run time error.

The returned <instance handle> or <instance handle set> can be empty if any of the
relationships in the chain are conditional in the direction of navigation.

If the optional where clause is added, the returned instance or set of instances will meet the
criteria of <where expression>. This implies that the instance handle or the instance handle
set may be empty if no instance(s) matched.

42

Object Action Language Manual

7.4.3 Example I

select one cat related by owner->C[R1];
select any dog related by owner->D[R2];
select many dogs related by owner->D[R2];

select any assignment from instances of PA here (selected.probe_ID ==
self.probe_ID);

select any dog related by owner->D[R2] where (selected.name == "Fido");
select many dogs related by owner->D[R2] where selected.color == "black";

7.4.4 Example II

select any student from instances of STU;
select many major_courses_offered related by

student->PROF[R34]->DEPT[R23]->COUR[R40];

43

8
EVENTS

8.1 Receiving Event Data
The keyword rcvd_evt is the name of a structure containing all of the supplemental data
items received with an event.

8.1.1 Syntax

rcvd_evt.<supplemental data item>

<supplemental data item> is the name of the data item.

8.1.2 Note

rcvd_evt.<supplemental data item> is an <expression> and so can be used in any OAL
construct specifying an expression.

8.1.3 Example

select any robot from instances of R;
robot.from = rcvd_evt.source;
robot.to = rcvd_evt.destination;

//
self.destination = rcvd_evt.destination;

44

Object Action Language Manual

8.2 Event Generation

8.2.1 Syntax

generate <event label> to <target>;
generate <event label>:<event meaning> to <target>;
generate <event label> (<event parameters>) to <target>;
generate <event label>:<event meaning> (<event parameters>) to <target>;
generate <instance handle>.<attribute>;

<event label> is <keyletter><event number>.

<event meaning> is the meaning of the event, enclosed by tick marks as in ’turn off the
light’; the tick marks may be omitted if the event meaning contains no spaces.

<event parameters> provides the supplemental data items (if any) to be carried by the
event. Each data item is given in the form <supplemental data item>:<expression>.
When multiple supplemental data items are required, separate the <supplemental data
item>:<expression> pairs by commas. If there are no supplemental data items, the
parentheses may be omitted.

<supplemental data item> is the name of a data item to be sent with the event.

<expression> is a string, arithmetic, boolean, simple, or compound expression. The
data type of the expression must match the data type defined for the given data item.

<target> is specified in a variety of ways, depending on the destination of the event.

For an event directed to an existing instance of a class, <target> is an instance handle.
For a creation event, <target> is: <keyletter> creator.
For an event directed at a single-instance assigner, <target> is: <keyletter> class.
For an event directed at an external entity, <target> is the external entity’s keyletters.

<instance_handle> is a handle to an instance of a class.

<attribute> is the name of an attribute of the class.

Chapter 8
Event Generation

45

8.2.2 Notes

The to clause provides all the information necessary to identify the destination of the event.

If an event has no supplemental data items, the empty parentheses around <event
parameters> may be omitted.

Supplemental data items may appear in any order in <event parameters>.

All supplemental data items defined for the event must be supplied.

The <event meaning> field is optional. It must be enclosed in tick marks if it contains
spaces, and it must be contained on a single line.

If <event meaning> is not used, the colon after <event label> must be omitted.

8.2.3 Examples

// event to existing instance
// State 1. "Up"
self.current_position = "up";
select one row related by self->ROW[R2];
generate ROW4:sample_complete() to row;

// creation event
generate S1:’Create sale’ (dept:dept_no, amount:sale_value) to S creator;

// event to assigner
generate PA_A1:row_needs_probe() to PA class;

// event to external entity
generate PIO7:’Motor start’ (motor_no:motor_id) to PIO;

46

Object Action Language Manual

8.3 Event Pre-creation
An event may be created without sending it by using the create event statement. This
statement should be used only

� to create an event for an analysis timer.

� as directed by the rules of the particular architecture onto which you plan to translate
your models.

8.3.1 Syntax

create event instance <event instance> of <event label> to <target>;

create event instance <event instance> of <event label>:<event meaning> to
<target>;

create event instance <event instance> of <event label> (<event
parameters>) to <target>;

create event instance <event instance> of <event label>:<event meaning>
(<event parameters>)to <target>;

<event label>, <event meaning>, <event parameters> and <target> are as defined in
"Event Generation" on page 44.

<event instance> is a local variable of type event instance.

8.3.2 Notes

The local variable <event instance> can be used to refer to an event instance of any type.

Event instances can be assigned to attributes of classes that are of type event instance.

Please refer to the notes in "Event Generation" on page 44.

Chapter 8
Sending a Pre-created Event

47

8.4 Sending a Pre-created Event
Event instances may be sent using the generate statement.

8.4.1 Syntax

generate <event instance>;

generate <instance handle>.<attribute>;

<event instance> is a local variable of type event instance.

<instance handle> is a handle to an instance of a class.

<attribute> is an attribute of the class.

8.4.2 Notes

Sends a pre-created event to its intended recipient.

� This feature is provided for use with analysis timers. These timers will eventually be
replaced with delayed events, at which time, support for pre-created events will likely be
removed.

48

Object Action Language Manual

49

9
EXPRESSIONS

9.1 Simple Expressions
Simple expressions are single unary or binary operations. An expression is not a complete
OAL statement, but is evaluated as part of a full OAL statement such as assign, if, where,
etc. Logical binary operators and and or are supported for both compound and simple
expressions.

9.1.1 Syntax

<read value>
<unary operator> <read value>
<read value> <binary operator> <read value>

<read value> is a constant, a local variable, the attribute of a class, a supplemental data item
received from an event, an operation invocation, a bridge invocation, or a function invocation.
It can also be a parameter specified with the param keyword in the action of a bridge
operation, function, or operation.

<unary operator> is any unary operator appropriate for the data type to which the expression
evaluates. For boolean read values, the unary operator is not. For arithmetic read values, the
unary operators are + and -. For instance handle and instance handle set read values, the unary
operators are empty, not_empty, and cardinality.

<binary operator> is any binary operator appropriate for the data types to which the
expressions evaluate. For boolean read values, the binary operators are and and or. For
arithmetic read values, the binary operators are +, -, *, /, and %. For instance handle and
instance handle set read values, the binary operators are == and !=. For string read values, the
binary operator is +.

50

Object Action Language Manual

9.1.2 Example

not (CHK::get_status())
x + y
name == "Jeff"
"Bridge" + "Point"
cust1.age - cust2.age

9.2 Compound Expressions
Compound expressions can be used to combine simple expressions, allowing for multiple
tests and more complex assignment arithmetic. Logical binary operators and and or are
supported for both compound and simple expressions.

9.2.1 Syntax

<operator> <expression>
<read value> <operator> <expression>
<expression> <operator> <read value>
<expression> <operator> <expression>

<expression> is a simple or a compound expression.

<operator> is any operator appropriate for the data types to which the expressions evaluate.

<read value> is a constant, a local variable, the attribute of a class, a supplemental data item
received from an event, an operation invocation, a bridge invocation, or a function invocation.

Chapter 9
Compound Expressions

51

9.2.2 Notes

The analyst can depend on the following rules regarding the order of evaluation of
expressions:

• Parentheses can be used to override all other ordering rules.

• Standard mathematical precedence governs the order of evaluation for all
mathematical operations.

• All subexpressions with operators of equal precedence are evaluated from left to
right, starting with the operators of highest precedence. This is repeated until the
compound expression has been completely evaluated.

• A short-circuit with regard to compound expressions means that an expression
can be fully evaluated based upon the value of one of its subexpressions.
Whether or not short-circuiting occurs depends entirely on the implementation
of the software architecture or the simulator being used. The analyst should
therefore avoid writing OAL that depends on short-circuiting of expressions.

9.2.3 Examples

// examples of compound expressions:
not (arm.available and servo.on)
2 * (x + y) + TIM::timer_remaining_time(timer_inst_ref:timer_1)
(a + b) / (c - d)

// examples of OAL statements using
// compound expressions:
if ((i == 1) AND (name == "Doug"))

assign x = 0.5 * (y + z);
end if;

x = x * ((x + 1) / (x + 2));

52

Object Action Language Manual

9.3 Arithmetic Expressions
Arithmetic expressions are defined for real and integer data types only. These data types may
be mixed for any given expression. Multiplicative operators are *, /, and %. Additive operators
are + and -. Multiplicative operators take precedence over additive operators. Parentheses
may be used to force precedence in arithmetic expressions.

9.3.1 Syntax

<unary arithmetic operator> <expression>
<expression> <binary arithmetic operator> <expression>

<expression> is any of the following that evaluates to a real or integer value: numeric
constant, local variable, attribute of a class, simple expression, compound expression,
operation invocation, bridge invocation, function invocation, or supplemental data item
received from an event.

<unary arithmetic operator> is + or -.

<binary arithmetic operator> is +, -, *, /, or % (remainder from arithmetic division).

9.3.2 Note

If any data item in the expression is real, the expression will evaluate to a data type of real.

9.3.3 Examples

-27
2 + 2
(x + y) / 2
0.707 * voltage
(plane.offset + ALT::get_altitude())

Chapter 9
Boolean Expressions

53

9.4 Boolean Expressions
A boolean expression is any expression that evaluates to either a TRUE or FALSE value.
Boolean expressions are often used for comparison in statements like if and while, and also
in where clauses. Although boolean expressions usually contain other expression types (such
as arithmetic or string expressions), they can also be used to compare time values, handles,
and unique IDs. There is also one unary operator, not, which can be used to logically negate
a boolean expression.

9.4.1 Syntax

not <boolean expression>
<expression> <boolean operator> <expression>
<time value> <boolean operator> <time value>
<handle> <boolean operator> <handle>
<unique_id> <boolean operator> <unique_id>

<expression> is any expression, simple or compound. Both expressions must evaluate to the
same type, either boolean, arithmetic, or string.

<boolean expression> is a simple or compound expression that evaluates to a boolean value.

<boolean operator> is a logical operator (refer to "Table 9-1" on page 54).

<time value> a date or a timestamp variable (or an operation, bridge, or function invocation
that returns a date or a timestamp).

<handle> an instance handle, instance handle set, or a timer handle (or an operation, bridge, or
function invocation that returns a handle to a timer).

<unique id> a variable of type unique ID (or an operation, bridge, or function invocation that
returns a unique ID).

54

Object Action Language Manual

9.4.2 Note

The left and right values of a binary boolean expression must evaluate to the same data type,
with the exception of integer and real.

9.4.3 Examples

x == 1
id != "abc"
CTL::error() or flag
(account.balance == 0.00) and ((TIM::get_current_time() - last_pay_time) >=

max_wait)

Logical
Operator

Meaning Valid Data Types

== equals integer, real, boolean, date, timestamp, string,
instance handle, unique ID, handle set, timer handle

!= does not equal integer, real, boolean, date, timestamp, string,
instance handle, unique ID, handle set, timer handle

< less than integer, real, date, timestamp, string

> greater than integer, real, date, timestamp, string

<= less than or equal to integer, real, date, timestamp, string

>= greater than or equal to integer, real, date, timestamp, string

and logical and boolean

or inclusive logical or boolean

not logical negation boolean

Table 9-1: The logical operators defined in the Object Action Language. Note that certain operators are
valid for certain data types only

Chapter 9
String Expressions

55

9.5 String Expressions
A string expression is any expression that evaluates to a string value. String expressions can
be either a simple string or a concatenation of one or more simple strings.

9.5.1 Syntax

<simple string>
<simple string> + ... + <simple string>;

<simple string> is any of the following that evaluates to a string value: string constant, local
variable, attribute of a class, operation invocation, bridge invocation, function invocation, or
a supplemental data item received from an event.

9.5.2 Examples

"Hello, world!"
"Executable" + "-" + "UML"
cust.first_name + " " + cust.last_name
CHS::get_date_string(date:TIM::current_date())

9.6 Where Expressions
A where expression is a special type of boolean expression used in a select statement. The
instance handle selected is valid only within the where expression. The selected keyword
should be used as an instance reference to access the instances of the given set for the select
statement containing the where expression. The where expression must evaluate to a boolean
value, and must use the selected keyword.

9.6.1 Note

The where expression can only be used in the where clause of a select statement.

56

Object Action Language Manual

9.6.2 Examples

select any firstname in EMP where selected.name == "Bob";
select many accounts in ACC where (selected.status == "Ok") and
(selected.balance > (min_bal + 200));

// Use where clause to find a particular probe.
select any probe from instances of SP

where selected.probe_ID == param.probe_id;
generate SP3:probe_in_position to probe;

9.7 Assignment of Variables
Calculations are performed using the following form of the assign statement:

9.7.1 Syntax

[assign] <boolean var> = <boolean expression>;
[assign] <arithmetic var> = <arithmetic expression>;
[assign] <string var> = <string expression>;

<boolean expression> is an expression evaluating to TRUE or FALSE.

<arithmetic expression> is an expression evaluating to a real or an integer value.

<string expression> is an expression evaluating to a string value.

<boolean var> is a boolean variable or a boolean attribute of a class instance.

<arithmetic var> is a real or integer variable or a real or integer attribute of a class instance.

<string var> is a string variable or a string attribute of a class instance.

Chapter 9
Constants

57

9.7.2 Notes

Arithmetic expressions are defined for real and integer data types only.

If <arithmetic var> is a local variable that is being assigned for the first time, it will be of
type integer if <arithmetic expression> evaluates to type integer, and of type real if
<arithmetic expression> evaluates to type real.

Once an <arithmetic var> has been assigned, it will not change data type from real to integer
or from integer to real. Real and integer variables can, however be assigned integer or real
values respectively.

If a real value is assigned to an integer variable, the fractional component is truncated.

The actual precision and truncation rules for arithmetic calculation depend on the software
architecture and implementation domains in use.

The assign keyword is optional.

9.7.3 Examples

assign x = 1;
pass = TRUE;
assign name = "Rover";
f = RTR::get_frequency() + 100;

9.8 Constants
In many of the examples, constants have been used as parts of expressions. While this serves
well for the purposes of illustration, it should be noted that most analysis models require
minimal use of constants since such data is more commonly stored as attributes of
specification classes.

58

Object Action Language Manual

9.8.1 Syntax

The syntax depends on the base data type:

9.8.2 Notes

Constants may be defined for the above data types only.

A constant may be used in any construct requiring an expression.

9.9 Addit ional Unary Operators
Three set operators have been provided to allow the analyst to determine the size of an
instance handle set or whether or not an instance handle is defined. These operations may be
performed anywhere an expression may be used.

9.9.1 Syntax

empty <handle>
not_empty <handle>
cardinality <handle>

<handle> is an <instance handle> or <instance handle set>.

Integer: 1, 42, -127, etc.

Real: 1.0, 4.5, -56.0, etc.

String: "string"

Boolean: TRUE, FALSE

Table 9-2: Syntax of Constant Data

Chapter 9
Additional Unary Operators

59

9.9.2 Notes

empty and not_empty return a value of type boolean.

cardinality returns an integer value.

9.9.3 Example

select one d_inst related by self->D[R1];
if (not_empty d_inst)

// Statements here protected against access to empty d_inst.
end if;

60

Object Action Language Manual

61

10
OPERATIONS, BRIDGES, AND FUNCTIONS

10.1 Operation Invocation
The analyst may define class-based and instance-based operations as desired using the
Operation Data Editor for a class under the Class Diagram. An operation invocation can be
used as a stand-alone statement or it can be used in an expression.

10.1.1 Syntax

As a operation expression:

<keyletter>::<class-based operation name> (<data item>:<expression>, ...)

<instance handle>.<instance-based operation name> (<data item>:
<expression>, ...)

As a stand-alone operation assignment statement:

<variable> = <keyletter>::<class-based operation name> (<data item>:
<expression>, ...);

<variable> = <instance handle>.<instance-based operation name> (<data
item>:<expression>, ...);

<keyletter> is the keyletter of a class.

<instance handle> is a handle to an instance of a class.

<class-based operation> and <instance-based operation> are the name of the operation.

62

Object Action Language Manual

<data item> is the name of a data item defined as input for <class-based operation name>
or <instance-based operation name>.

<expression> is a string, arithmetic, boolean, simple, or compound expression. The data
type of the expression must match the data type defined for the given data item.

<variable> is a class attribute or a local variable.

10.1.2 Notes

An operation expression may be used anywhere an expression is valid (e.g., assignment
statement read values, control logic expressions, etc.).

The stand-alone operation must always be a stand-alone statement and cannot be used as an
expression within another statement.

Since an operation expression may be used anywhere an expression may be used, stand-alone
operation assignment statements are not necessary. The user may simply use an operation
expression as a read value and use an assign statement to assign the return value to
<variable>.

Parentheses are required even if there are no data items.

If <variable> is a local variable that is being assigned for the first time, it will be of the same
data type as the return value of <operation name>.

If the type of <variable> has already been established (that is, if it is the attribute of a class
or a local variable that has been previously assigned), then either:

• <variable> must be of the same data type as the output value of the operation,

or

• the output value of the operation is of type integer or real and <variable> is
of type integer or real.

Chapter 10
Bridge Invocation

63

10.1.3 Example

// operation expressions without assigning the return value
DD::open(wait:20);
window.update(title:”Dialog”);

// operation expression as an assignment statement read value
volume = DD::get_volume();

// operation expression within a while loop
while (MOD::status() != 1)

value = this_mod.poll();
end while;

// stand-alone operation assignment statement
branch = TR::get_next_branch();

10.2 Bridge Invocation

10.2.1 Syntax

As a bridge expression:

<eekeyletter>::<bridge name> (data item>:<expression>, ...)

As a stand-alone bridge assignment statement:

<variable> = <eekeyletter>::<bridge name> (<data item>:<expression>, ...);

<eekeyletter> are the keyletters of an external entity.

<bridge name> is the name of a bridge assigned to the external entity.

<data item> is the name of a data item input to <bridge name>.

64

Object Action Language Manual

<expression> is a string, arithmetic, boolean, simple or compound expression. The data
type of the expression must match the data type defined for the given data item.

<variable> is a class attribute or a local variable.

10.2.2 Notes

It is strongly recommended that BridgePoint’s external entities be used only to represent
domains.

A bridge expression may be used anywhere an expression is valid (e.g., assignment statement
read values, control logic expressions, etc.).

The stand-alone bridge assignment statement must always be a stand-alone statement and
cannot be used as an expression within another statement.

Since a bridge expression may be used anywhere an expression may be used, stand-alone
bridge assignment statements are not necessary. The user may simply use a bridge expression
as a read value and use an assign statement to assign the return value to <variable>.

Parentheses are required even if there are no data items.

If <variable> is a local variable that is being assigned for the first time, it will be of the same
data type as the output value of <bridge name>.

If the type of <variable> has already been established (that is, if it is the attribute of a class
or a local variable that has previously been assigned), then either:

• <variable> must be of the same data type as the output value of the bridge,

or

• the output value of the bridge is of type integer or real and <variable> is of
type integer or real.

Chapter 10
Bridge Invocation

65

10.2.3 Example

// bridge expression without assigning the return value
OT::start();

// bridge expression as an assignment statement read value
cur_time = bridge TIM::current_time();

// bridge expression within the test part of an if statement
if (TIM::timer_add_time(timer_inst_ref:my_timer, microseconds:500))

wait = wait + 500;
end if;

// stand-alone bridge assignment statement
bridge my_timer = TIM::timer_start(microseconds:500, event_inst:my_evt);

// State 4. "Raising"
needle_position = SPPIO::raise_needle (

radial_position:self.radial_position,
theta_offset:self.theta_offset,
probe_id:self.probe_ID);

10.2.4 Avoiding Ambiguity in Invocations

Ambiguity among class and bridge operations can arise if the following conditions are
present within a single domain:

• An external entity (EE) and a class share the same keyletters.

• The EE has a bridge operation with the same name as a class operation
associated with the class.

When set, the Class Keyletters check-box under Preferences | User | Audits will report any
EE’s and Classes that share the same key letters. The key letter ambiguity should be removed
by changing the key letter of either the EE or the class.

66

Object Action Language Manual

10.3 Function Invocation
A function is an operation that is global to the domain being modeled. Unlike class
operations and bridge operations, a function’s scope is at the domain level.

10.3.1 Syntax

As a function expression:

::<function name> (data item>:<expression>, ...)

As a stand-alone function assignment statement:

<variable> = ::<function name> (<data item>:<expression>, ...);

<function name> is the name of a function.

<data item> is the name of a data item input to <function name>.

<expression> is a string, arithmetic, boolean, simple or compound expression. The data
type of the expression must match the data type defined for the given data item.

<variable> is a class attribute or a local variable.

10.3.2 Notes

It is strongly recommended that functions be named according to some convention that
conveys their meaning throughout the domain.

A function expression may be used anywhere an expression is valid (e.g., assignment
statement read values, control logic expressions, etc.).

The stand-alone function assignment statement must always be a stand-alone statement and
cannot be used as an expression within another statement.

Chapter 10
Function Invocation

67

Since a function expression may be used anywhere an expression may be used, stand-alone
function assignment statements are not necessary. The user may simply use a function
expression as a read value and use an assign statement to assign the return value to
<variable>.

Parentheses are required even if there are no data items.

If <variable> is a local variable that is being assigned for the first time, it will be of the same
data type as the output value of <function name>.

If the type of <variable> has already been established (that is, if it is the attribute of a class
or a local variable that has previously been assigned), then either:

• <variable> must be of the same data type as the output value of <function
name>

or

• the output value of <function name> is of type integer or real and <variable> is
of type integer or real.

10.3.3 Example

// function expression without assigning the return value
::start();

// function expression as an assignment statement read value
cur_ext_time = ::current_external_time();

// function expression within the test part of an if statement
if (::shutdown())

generate S1:’Shutdown’() to S Creator;
end if;

// stand-alone function assignment statement
status = ::shutdown();

68

Object Action Language Manual

10.4 Object Action Language for Invocations
OAL can be specified for class and instance-based operations, bridge operations, and
functions. The syntax rules applied to actions for these differ slightly from those applied to
state actions. These differences are described in detail below.

10.4.1 Return Statement

Since class operations, bridge operations, and functions can return a value, the return
statement is accepted within their actions.

Syntax

return <expression>;
return;

<expression> is a string, arithmetic, boolean, simple or compound expression. The data type
of the expression must match the data type defined for the return value of the class operation,
bridge operation, or function.

Notes

When executed, the return statement causes control to be returned to the caller.

The value returned to the caller is <expression>.

If the return value of the class operation, bridge operation, or function is void, then
<expression> must be omitted.

Chapter 10
Object Action Language for Invocations

69

Example

select any dog from instances of DOG;
return dog.weight;

// SSPIO: Bridge "Lower needle"
select any probe from instances of SP

where selected.probe_ID == param.probe_id;
generate SP3:probe_in_position to probe;
return "down";

10.4.2 Parameters

Class and instance-based operations, bridge operations, and functions can accept parameters.
These parameters can be accessed as read values by using the param keyword within the
action. They can be modified if they are by-reference parameters.

Syntax

param.<parameter>

<parameter> is the name of a parameter.

Note

param.<parameter> is an <expression> and so can be used in any OAL construct specifying
an expression.

70

Object Action Language Manual

Example

// For an invocation like MATH::SQR(x:3)
// Return x**2
return param.x * param.x;

10.4.3 Use of self keyword

Instance-based operations can use the keyword self to reference the instance to which the
operation is currently being applied. The self keyword can be used anywhere that is valid.

Note

Class-based operations, bridge operations, and functions can not use the self keyword since
they are not related to a specific instance.

Example

// attribute access
self.a = self.b;
// event generation
generate E1:’one’() to self;

10.4.4 Other Differences

Class and instance-based operations, bridge operations, and functions may not refer to the
rcvd_evt keyword. This keyword is only allowed within a state action since these are the
only actions that can receive events.

71

11
DATE AND TIME

11.1 External and Internal Time
This section describes statements that support date and time. The OAL supports two different
concepts of time:

External time: Time as known in the external world. For example, 12 October 1492,
13:25:10. The accuracy of external time is dependent on the architecture and
implementation.

Internal time: An internal system clock that measures time in “ticks”. The value of a tick
is dependent upon the architecture and implementation.

11.1.1 External Time

Syntax

To create a <date variable>, write

[bridge] <date variable> = TIM::create_date (day:<arithmetic expression>,
month:<arithmetic expression>, year:<arithmetic expression>,
second:<arithmetic expression>, minute:<arithmetic expression>,
hour:<arithmetic expression>);

To read the current date or time, write

[bridge] <date variable> = TIM::current_date ();

72

Object Action Language Manual

To extract components of a <date variable>

<integer variable> = TIM::get_day (date:<date variable>);
<integer variable> = TIM::get_month (date:<date variable>);
<integer variable> = TIM::get_year (date:<date variable>);
<integer variable> = TIM::get_second (date:<date variable>);
<integer variable> = TIM::get_minute (date:<date variable>);
<integer variable> = TIM::get_hour (date:<date variable>);

<arithmetic expression> is an arithmetic expression evaluating to an integer value.

<date variable> is a local variable or a class attribute of type date.

<integer variable> is a local variable or a class attribute of type integer.

Note

External time is represented by a 24-hour clock.

11.1.2 Internal Time

Syntax

To read the internal system clock, write

[bridge] <time variable> = TIM::current_clock ();

<time variable> is a local variable or a class attribute of type timestamp.

Note

The system clock counts time in ticks. The size of a tick is dependent on the architecture and
implementation.

73

12
TIMERS

12.1 Starting a Timer

12.1.1 Syntax

[bridge] <timer handle> = TIM::timer_start (microseconds:<arithmetic
expression>, event_inst:<event instance>);

<timer handle> is a handle to a timer instance.

<arithmetic expression> is an expression that evalues to an integer value.

<event instance> is a handle to an event instance.

This bridge operation starts a timer set to expire in <arithmetic expression> microseconds,
generating the event <event instance> upon expiration. Returns the instance handle of the
timer.

The bridge keyword is optional.

[bridge] <timer handle> = TIM::timer_start_recurring (microseconds:
<arithmetic expression>, event_inst:<event instance>);

<timer handle> is a handle to a timer instance.

<arithmetic expression> is an expression that evalues to an integer value.

<event instance> is a handle to an event instance.

74

Object Action Language Manual

This bridge operation starts a timer set to expire in <arithmetic expression> microseconds,
generating the event <event instance> upon expiration. Upon expiration, the timer will be
restarted and fire again in <arithmetic expression> microseconds generating the event
<event instance>. This bridge operation returns the instance handle of the timer.

The bridge keyword is optional.

12.1.2 Example

// State 3. "Down"
select one row related by self->ROW[R2];
st = row.sampling_time;
create event instance move_on of SP1:finished_sampling() to self;
mo_timer = TIM::timer_start(microseconds:st, event_inst:move_on);

12.2 Querying a Timer

12.2.1 Syntax

[bridge] <integer variable> = TIM::timer_remaining_time (timer_inst_ref:
<timer handle>);

<integer variable> is a local variable or a class attribute of type integer.

<timer handle> is a handle to a timer instance.

Returns the time remaining (in microseconds) for the timer specified by <timer handle>. If
the timer has expired, a zero value is returned.

The bridge keyword is optional.

Chapter 12
Manipulating a Timer

75

12.3 Manipulating a Timer

12.3.1 Syntax

[bridge] <boolean variable> = TIM::timer_reset_time (timer_inst_ref:<timer
handle>, microseconds:<arithmetic expression>);

<boolean variable> is a local variable or a class attribute of type boolean.

<timer handle> is a handle to a timer instance.

<arithmetic expression> is an expression that evalues to an integer value.

This bridge operation attempts to set an existing timer <timer handle> to expire in
<arithmetic expression> microseconds. If the timer exists (that is, it has not expired), a
TRUE value is returned. If the timer no longer exists, a FALSE value is returned.

[bridge] <boolean variable> = TIM::timer_add_time (timer_inst_ref:<timer
handle>, microseconds:<arithmetic expression>);

<boolean variable> is a local variable or a class attribute of type boolean.

<timer handle> is a handle to a timer instance.

<arithmetic expression> is an expression that evalues to an integer value.

This bridge operation attempts to add <arithmetic expression> microseconds to an existing
timer <timer handle>. If the timer exists (that is, it has not expired), a TRUE value is
returned. If the timer no longer exists, a FALSE value is returned.

The bridge keyword is optional.

76

Object Action Language Manual

12.4 Cancel ing a Timer

12.4.1 Syntax

[bridge] <boolean variable> = TIM::timer_cancel (timer_inst_ref:<timer
handle>);

<boolean variable> is a local variable or a class attribute of type boolean.

<timer handle> is a handle to a timer instance.

This bridge operation cancels and deletes the timer specified by <timer handle>. If the
timer exists (that is, it had not expired), a TRUE value is returned. If the timer no longer exists,
a FALSE value is returned.

The bridge keyword is optional.

12.4.2 Notes

When a timer fires, it is deleted unless it was created using the timer_start_recurring
bridge operation.

In many architectures there may be a delay between the expiration of a timer and the delivery
of the associated event to the receiving state machine.

77

A
REFERENCES

A.1 References
The following published works were used in compiling this manual.

Mel02 Stephen J. Mellor and Marc J. Balcer, Executable UML: A Foundation for
Model-Driven Architecture, Addison-Wesley, Boston, MA, 2002

Shl92 Sally Shlaer and Stephen J. Mellor, Object Lifecycles: Modeling the World in States,
Prentice Hall, Englewood Cliffs, 1992

Shl95 Sally Shlaer and Neil Lang, Shlaer-Mellor Method: The OOA96 Report, Project
Technology, Inc., Berkeley, California, 1995

Wil95 Ian Wilkie, Adrian King, and Mike Clarke, The Action Specification Language (ASL)
Reference Guide, version 2.4, Kennedy-Carter, London, 1995

78

Object Action Language Manual

79

B
KEYWORDS

B.1 Keywords
The following enumerates the list of reserved words.:

Any keyword can appear in full upper case, full lower case or with the first character in upper
case and the remaining characters in lower case.

across and any assign

assigner break bridge by

cardinality class continue create

creator delete each elif

else empty end event

false for from generate

if in instance instances

many not not_empty object

of one or param

rcvd_evt relate related return

select selected self to

transform true unrelate using

where while

Table B-1: BridgePoint Object Action Language Keywords

80

Object Action Language Manual

81

C
SYNTAX SUMMARY

C.1 Language Constructs

C.1.1 Control Logic

if (<boolean expression>)
// Executed if above boolean expression evaluates to TRUE
<statements>

elif (<boolean expression>)
// Executed if above boolean expression evaluates to TRUE and previous
boolean expression is FALSE
<statements>

else
// Executed if both boolean expressions evaluate to FALSE
<statements>

end if;

for each <instance handle> in <instance handle set>
<statements>

end for;

while <boolean expression>
<statements>

end while;

break;

continue;

82

Object Action Language Manual

C.1.2 Instance Creation

create object instance <instance handle> of <keyletter>;

create object instance of <keyletter>;

C.1.3 Instance Selection

select any <instance handle> from instances of <keyletter> [where <where
expression>];

select many <instance handle set> from instances of <keyletter> [where
<where expression>];

C.1.4 Writing Attributes

[assign] <instance handle>.<attribute> = <expression>;

[assign] self.<attribute> = <expression>; // Mathematically-dependent only

C.1.5 Reading Attributes

[assign] <variable> = <instance handle>.<attribute>;

C.1.6 Instance Deletion

delete object instance <instance handle>;

Appendix C
Language Constructs

83

C.1.7 Creating Instances of a Relationship

relate <source instance handle> to <destination instance handle> across
<relationship specification>;

relate <source instance handle> to <destination instance handle> across
<relationship specification> using <associative instance handle>;

C.1.8 Deleting Instances of a Relationship

unrelate <source instance handle> from <destination instance handle> across
<relationship specification>;

unrelate <source instance handle> from <destination instance handle> across
<relationship specification> using <associative instance handle>;

C.1.9 Instance Selection by Relationship Navigation

select one <instance handle> related by <start> -> <relationship link chain>
[where <where expression>];

select any <instance handle> related by <start> -> <relationship link chain>
[where <where expression>];

select many <instance handle set> related by <start> -> <relationship link
chain> [where <where expression>];

C.1.10 Creating Events

create event instance <event instance> of <event label>[:<event meaning>]
[(<event parameters>)] to <target>;

84

Object Action Language Manual

C.1.11 Generating Events

generate <event label>[:<event meaning>] [(<event parameters>)] to <target>;

generate <event instance>;

generate <instance handle>.<attribute>;

C.1.12 Accessing Event Data

rcvd_evt.<supplemental data item>

C.1.13 Arithmetic, Logical, and String Assignment

[assign] <boolean var> = <boolean expression>;

[assign] <arithmetic var> = <arithmetic expression>;

[assign] <string var> = <string expression>;

C.1.14 Unary Operators

empty <handle>

not_empty <handle>

cardinality <handle>

Appendix C
Language Constructs

85

C.1.15 Operations

[transform] <keyletter>::<operation name> (<data item>:<expression>, ...);

[assign] <variable> = [transform] <keyletter>::<operation name> (<data item>:
<expression>, ...);

C.1.16 Bridges

[bridge] <eekeyletter>::<bridge name> (<data item>:<expression>, ...);

[assign] <variable> = [bridge] <eekeyletter>::<bridge name> (<data item>:
<expression>, ...);

C.1.17 Functions

::<function name> (<data item>:<expression>, ...);

[assign] <variable> = ::<function name> (<data item>:<expression>, ...);

C.1.18 Object Action Language for Non-State Actions

return <expression>;

return;

param.<parameter>

86

Object Action Language Manual

C.1.19 Date and Time

[bridge] <date variable> = TIM::create_date (day:<arithmetic expression>,
month:<arithmetic expression>, year:<arithmetic expression>, second:
<arithmetic expression>, minute:<arithmetic expression>, hour:<arithmetic
expression>);

[bridge] <date variable> = TIM::current_date ();

[bridge] <time variable> = TIM::current_clock ();

<integer variable> = TIM::get_day (date:<date variable>);

<integer variable> = TIM::get_month (date:<date variable>);

<integer variable> = TIM::get_year (date:<date variable>);

<integer variable> = TIM::get_second (date:<date variable>);

<integer variable> = TIM::get_minute (date:<date variable>);

<integer variable> = TIM::get_hour (date:<date variable>);

C.1.20 Timers

[bridge] <timer handle> = TIM::timer_start (microseconds:<arithmetic
expression>, event_inst:<event instance>);

[bridge] <timer handle> = TIM::timer_start_recurring (microseconds:<arithmetic
expression>, event_inst:<event instance>);

[bridge] <integer variable> = TIM::timer_remaining_time (timer_inst_ref:<timer
handle>);

[bridge] <boolean variable> = TIM::timer_reset_time (timer_inst_ref:<timer
handle>, microseconds:<arithmetic expression>);

Appendix C
Language Constructs

87

[bridge] <boolean variable> = TIM::timer_add_time (timer_inst_ref:<timer
handle>, microseconds:<arithmetic expression>);

[bridge] <boolean variable> = TIM::timer_cancel (timer_inst_ref:<timer handle>
);

88

Object Action Language Manual

C.2 Statement Components

<arithmetic expression> an expression evaluating to a real or an integer value. Used in places where
only an integer is required.

<arithmetic operator> a +, -, *, /, or % (remainder from arithmetic division)

<attribute> the name of an attribute

<binary operator> an and, or, +, -, *, /, or %

<boolean expression> an expression evaluating to TRUE or FALSE

<bridge name> the name of a bridge defined for the external entity specified by
<eekeyletter>.

<eekeyletter> the keyletter of an external entity

<event instance> a local variable of type event instance

<event label> the <keyletter><event number>

<event meaning> the meaning of the event, as in ’turn off the light’; the tick marks may be
omitted if the event meaning contains no spaces.

<event parameters> the supplemental data items (if any) to be carried by the event. Each data
item is given in the form <supplemental data item>:<expression>.

<handle> an <instance handle>, <instance handle set>, or a timer handle (or a bridge,
operation, or function invocation that returns a timer handle).

<instance handle> a local variable referring to a single instance

<instance handle set> a local variable referring to a set of instance handles

<keyletter> the key letters of a class

<operation name> the name of a operation defined for the class specified by <keyletter>.

<read value> a readable value: a constant, local variable, <instance handle>.<attribute>,
rcvd_evt.<supplemental data item>, param.<parameter>, or an invocation
of an operation, bridge operation, or function.

<relationship link> a <keyletter>[<relationship specification>], where the square brackets are
literal and do not indicate optional text.

Table C-1: Statement Components

Appendix C
Production Rules

89

C.3 Production Rules
This section contains the production rules for the language expressed in EBNF.

statement ::= (assignment_statement | break_statement | bridge_statement | bridge_or_operation_statement
| continue_statement | create_event_statement | create_object_statement | delete_statement |
empty_statement | for_statement | function_statement | generate_statement | if_statement |
operation_statement | relate_statement | return_statement | select_statement | unrelate_statement |
while_statement) SEMI ;

assignment_statement ::= [ASSIGN] assignment_expr ;

break_statement ::= BREAK ;

bridge_statement ::= BRIDGE [(local_variable | attribute_access) EQUAL] bridge_invocation ;

bridge_or_operation_statement ::= bridge_or_operation_invocation ;

<relationship link
chain>

<relationship link> or <relationship link> -> ... -> <relationship link>

<relationship phrase> the text description of the relationship enclosed in tick marks

<relationship
specification>

R<number> or R<number>.<relationship phrase>

<simple string> any of the following that evaluates to a string value: string constant, local
variable, attribute, operation invocation, bridge invocation, function
invocation, or a supplemental data item received from an event.

<string expression> an expression evaluating to a string value

<supplemental data
item>

the name of a supplemental data item

<unary operator> a unary operator such as not for boolean expressions and + and - for
arithmetic expressions.

<unique id> a variable of type unique ID (or an operation, bridge or function invocation
that returns a unique ID).

<where expression> a special boolean expression at the end of a select statement; it must contain
the selected keyword.

Table C-1: Statement Components

90

Object Action Language Manual

continue_statement ::= CONTINUE ;

create_event_statement ::= CREATE EVENT INSTANCE local_variable OF event_spec ;

create_object_statement ::= CREATE OBJECT INSTANCE [(local_variable OF)? local_variable] OF
object_keyletters ;

delete_statement ::= DELETE OBJECT INSTANCE inst_ref_var ;

empty_statement ::= ;

for_statement ::= FOR EACH local_variable IN inst_ref_set_var (statement)* (END FOR | Eof) ;

function_statement ::= [(local_variable | attribute_access) EQUAL] function_invocation ;

generate_statement ::= GENERATE (event_spec | local_variable) ;

if_statement ::= IF expr (statement)* [(ELIF expr (statement)*)+] [ELSE (statement)*] (END IF |
Eof) ;

operation_statement ::= TRANSFORM [(local_variable | attribute_access) EQUAL]
operation_invocation ;

relate_statement ::= RELATE inst_ref_var TO inst_ref_var ACROSS relationship [DOT phrase] [USING
assoc_obj_inst_ref_var] ;

return_statement ::= RETURN [expr] ;

select_statement ::= SELECT (ONE local_variable object_spec | ANY local_variable object_spec | MANY
local_variable object_spec) ;

unrelate_statement ::= UNRELATE inst_ref_var FROM inst_ref_var ACROSS relationship [DOT phrase
] [USING assoc_obj_inst_ref_var] ;

while_statement ::= WHILE expr (statement)* (END WHILE | Eof) ;

assignment_expr ::= (local_variable EQUAL)? local_variable EQUAL expr | (attribute_access EQUAL)?
attribute_access EQUAL expr | event_data_access EQUAL expr ;

attribute_access ::= inst_ref_var DOT attribute ;

bridge_invocation ::= ee_keyletters DOUBLECOLON bridge_function LPAREN [
bridge_or_operation_parameters] RPAREN ;

bridge_or_operation_invocation ::= obj_or_ee_keyletters DOUBLECOLON function_name LPAREN [
bridge_or_operation_parameters] RPAREN ;

bridge_or_operation_expr ::= BRIDGE bridge_invocation | TRANSFORM operation_invocation |
bridge_or_operation_invocation ;

Appendix C
Production Rules

91

bridge_or_operation_parameters ::= bridge_or_operation_data_item COLON expr (COMMA
bridge_or_operation_data_item COLON expr)* ;

event_data_access ::= RCVD_EVT DOT supp_data_item ;

event_spec ::= event_label [COLON event_meaning] [LPAREN [supp_data] RPAREN] TO (((
object_keyletters CLASS)? object_keyletters CLASS | (object_keyletters CREATOR)?
object_keyletters CREATOR) | (inst_ref_var_or_ee_keyletters)) ;

function_invocation ::= DOUBLECOLON function_function LPAREN [function_parameters] RPAREN ;

function_parameters ::= function_data_item COLON expr (COMMA function_data_item COLON expr)*
;

inst_ref_var_or_ee_keyletters ::= (local_variable | GENERAL_NAME | kw_as_id3) ;

instance_chain ::= local_variable (ARROW object_keyletters LSQBR relationship [DOT phrase] RSQBR
)+ ;

object_spec ::= (RELATED BY instance_chain | FROM INSTANCES OF object_keyletters) [WHERE
expr] ;

param_data_access ::= PARAM DOT bridge_or_operation_data_item ;

supp_data ::= supp_data_item COLON expr (COMMA supp_data_item COLON expr)* ;

operation_invocation ::= object_keyletters DOUBLECOLON operation_function LPAREN [
bridge_or_operation_parameters] RPAREN ;

where_spec ::= expr ;

assoc_obj_inst_ref_var ::= inst_ref_var ;

attribute ::= general_name ;

bridge_function ::= function_name ;

bridge_or_operation_data_item ::= data_item_name ;

data_item_name ::= general_name ;

keyletters ::= general_name ;

ee_keyletters ::= keyletters ;

event_label ::= general_name ;

event_meaning ::= (phrase | general_name) ;

function_data_item ::= data_item_name ;

92

Object Action Language Manual

function_function ::= function_name ;

general_name ::= (limited_name | GENERAL_NAME | kw_as_id2 | kw_as_id4) ;

limited_name ::= ID | RELID ;

inst_ref_set_var ::= local_variable ;

inst_ref_var ::= local_variable ;

kw_as_id1 ::= ACROSS .. USING;

kw_as_id2 ::= ACROSS .. TRUETOKEN;

kw_as_id3 ::= BRIDGE .. TRUETOKEN;

kw_as_id4 ::= PARAM .. SELF;

local_variable ::= (limited_name | kw_as_id1 | SELECTED | SELF | INVALID_CHARACTERS) ;

function_name ::= general_name ;

obj_or_ee_keyletters ::= keyletters ;

object_keyletters ::= keyletters ;

phrase ::= (PHRASE | BADPHRASE_NL | Eof) ;

relationship ::= RELID ;

supp_data_item ::= data_item_name ;

operation_function ::= function_name ;

expr ::= sub_expr ;

sub_expr ::= conjunction (OR conjunction)* ;

conjunction ::= relational_expr (AND relational_expr)* ;

relational_expr ::= addition [COMPARISON_OPERATOR addition] ;

addition ::= multiplication (PLUS_OR_MINUS multiplication)* ;

multiplication ::= boolean_negation | sign_expr (MULT_OP sign_expr)* ;

sign_expr ::= [PLUS | MINUS] term ;

boolean_negation ::= NOT term ;

term ::= (CARDINALITY | EMPTY | NOTEMPTY) local_variable | rval | LPAREN ((assignment_expr
)? assignment_expr | expr) RPAREN ;

Appendix C
Production Rules

93

rval ::= constant_value | variable | attribute_access | event_data_access | bridge_or_operation_expr |
param_data_access | QMARK ;

variable ::= local_variable ;

constant_value ::= (FRACTION | NUMBER | TRUETOKEN | FALSETOKEN) | quoted_string ;

quoted_string ::= QUOTE (STRING | BADSTRING_NL | Eof) ;

94

Object Action Language Manual

95

INDEX

Symbols
- 52

!= 54

% 52

* 52

+ 52

/ 52

< 54

<= 54

== 54

> 54

>= 54

A
Across

in relate statement 36

Action
semantics 1, 3
types of 4

And 49, 50, 54

Assign
and data typing 10
for writing 28, 30
variables 56

Assigner 44

Associative relationship
creating 37
unrelating 38

Attributes
mathematically-dependent 28, 29
reading 31
writing 28

Autosampler 6

B
Break 21

Bridge 63, 66

C
Cardinality 58

Comments 7

Constants 57

Contacting Project Technology 2

Continue 22

Create
associative instance 37
create_date 71
event instance 46
object instance 25
relationship 36

Creator 44

96

Object Action Language Manual

D
Data items

within an action 9

Data types 10
declaration statements 10
handle set 11
instance handle 11

Delete
object instance 32
relationship 33, 38
unconditional relationship 39

Domain
data types specific to 10
external entities as 64

E
Each 19

EBNF 89

Elif 17

Else 17

Empty
function 58
handle set 11, 41
tick marks 45

End 20

End if 17

Event
external entities, to 44
generation 44

example 45
instance 12, 46
supplemental data 43, 44, 45, 70

example 29

Example model 6

Expressions
arithmetic 52
boolean 53
compound 50
string 55
where expression 55

External entity 63
and domains 64
events to 44

F
Failure

in relationship navigation 41

False 53

For 19

For Each 19

From instances of 26

G
Generate 47

See Events 44

H
Handle

See Instance handle and Instance handle set

I
If 17

Initialization
of variables 13

Index

97

Instance 25
creating 25
deleting 32

Instance handle 12
creation of 25
data type 11
data type of ’self’ 11
defined 11
empty in relationship navigation 41
existence of 58
in deleting an instance of a relationship 38
in for each 19, 20
in select 26
relating 36
self 25, 30

example usage 31, 32
within MDA actions 30

Instance handle set 12
defined 11
empty 11, 41
empty in relationship navigation 41
in for each 19
in select 26
size of 58

L
Logical operation 54

M
Mathematically-dependent attributes 28, 29

self keyword 30

N
Naming rules 8

Not 53, 54

Not_empty 58

O
Of 25

Or 49, 50, 54

P
Param 69

Phone numbers 2

Production rules 89

Project Technology
contacting 2
website 2

R
Rcvd_evt

See Event supplemental data

Read value 13, 49, 50, 62, 63, 88
example 63

Relate 36

Related by
in select statement 40

Relationship
deletion of super/subtype 39
phrase 35
specification 35
specifications 35
unrelate 38

Relationship navigation 40

Return 68

98

Object Action Language Manual

S
Scope

control logic structures 14
definition 14

Select
any 26, 40
many 26, 40
one 40
related by 40

Selected
use in where expressions 55

Self 9, 11
data type of 11
in relationship creation 37
in relationship navigation 38
use in create statement 25

Super/subtype relationships
deletion of 39

Supplemental data item 43
in generated events 44

Syntax specification 89

T
Tick marks 35

Timer handle 12

Transform 61

True 53

U
Unconditional relationship

creation of 25
deletion of 39

Unrelate 38

Using
in relate statement 36

V
Variable initialization 13

W
Where clause

in select statement 26

While 20

White space 8

	Overview
	1.1 Documentation Road Map
	1.1.1 Object Action Language Manual

	1.2 Typographical Conventions
	1.3 Contacting Project Technology

	Introduction
	2.1 Purpose
	2.2 Basic Concepts
	2.3 Intended Audience
	2.4 Additional Conventions
	2.5 Examples

	Language Structure
	3.1 Overall Structure
	3.2 Comments
	3.3 Names and Keywords
	3.4 White Space

	Data Items
	4.1 Data Items Within an Action
	4.2 Modeled Elements
	4.2.1 Implicit Typing

	4.3 Local Variables
	4.3.1 Notes

	4.4 Assigning Data Types
	4.5 Variable Initialization
	4.5.1 Examples

	4.6 Scoping
	4.6.1 Notes
	4.6.2 Example

	Control Structures
	5.1 If Construct
	5.1.1 Syntax
	5.1.2 Notes
	5.1.3 Example

	5.2 For Each Loop
	5.2.1 Syntax
	5.2.2 Notes
	5.2.3 Example

	5.3 While Loop
	5.3.1 Syntax
	5.3.2 Note
	5.3.3 Example

	5.4 Break
	5.4.1 Note
	5.4.2 Example

	5.5 Continue
	5.5.1 Note
	5.5.2 Example

	5.6 Nested Control Logic
	5.6.1 Example

	Class Manipulations
	6.1 Creating Instances
	6.1.1 Syntax
	6.1.2 Notes
	6.1.3 Examples

	6.2 Selecting Instances
	6.2.1 Syntax
	6.2.2 Notes
	6.2.3 Example

	6.3 Writing Attributes
	6.3.1 Syntax
	6.3.2 Notes
	6.3.3 Example I
	6.3.4 Example II

	6.4 Writing Mathematically-Dependent Attributes
	6.4.1 Syntax
	6.4.2 Notes
	6.4.3 Example

	6.5 Reading Attributes
	6.5.1 Syntax
	6.5.2 Notes
	6.5.3 Example

	6.6 Deleting Instances
	6.6.1 Syntax
	6.6.2 Notes
	6.6.3 Example

	Relationships
	7.1 Relationship Specifications
	7.1.1 Syntax
	7.1.2 Note
	7.1.3 Examples

	7.2 Creating an Instance of a Relationship
	7.2.1 Syntax
	7.2.2 Notes
	7.2.3 Examples

	7.3 Deleting an Instance of a Relationship
	7.3.1 Syntax
	7.3.2 Notes
	7.3.3 Examples

	7.4 Relationship Navigation
	7.4.1 Syntax
	7.4.2 Notes
	7.4.3 Example I
	7.4.4 Example II

	Events
	8.1 Receiving Event Data
	8.1.1 Syntax
	8.1.2 Note
	8.1.3 Example

	8.2 Event Generation
	8.2.1 Syntax
	8.2.2 Notes
	8.2.3 Examples

	8.3 Event Pre-creation
	8.3.1 Syntax
	8.3.2 Notes

	8.4 Sending a Pre-created Event
	8.4.1 Syntax
	8.4.2 Notes

	Expressions
	9.1 Simple Expressions
	9.1.1 Syntax
	9.1.2 Example

	9.2 Compound Expressions
	9.2.1 Syntax
	9.2.2 Notes
	9.2.3 Examples

	9.3 Arithmetic Expressions
	9.3.1 Syntax
	9.3.2 Note
	9.3.3 Examples

	9.4 Boolean Expressions
	9.4.1 Syntax
	9.4.2 Note
	9.4.3 Examples

	9.5 String Expressions
	9.5.1 Syntax
	9.5.2 Examples

	9.6 Where Expressions
	9.6.1 Note
	9.6.2 Examples

	9.7 Assignment of Variables
	9.7.1 Syntax
	9.7.2 Notes
	9.7.3 Examples

	9.8 Constants
	9.8.1 Syntax
	9.8.2 Notes

	9.9 Additional Unary Operators
	9.9.1 Syntax
	9.9.2 Notes
	9.9.3 Example

	Operations, Bridges, and Functions
	10.1 Operation Invocation
	10.1.1 Syntax
	10.1.2 Notes
	10.1.3 Example

	10.2 Bridge Invocation
	10.2.1 Syntax
	10.2.2 Notes
	10.2.3 Example
	10.2.4 Avoiding Ambiguity in Invocations

	10.3 Function Invocation
	10.3.1 Syntax
	10.3.2 Notes
	10.3.3 Example

	10.4 Object Action Language for Invocations
	10.4.1 Return Statement
	10.4.2 Parameters
	10.4.3 Use of self keyword
	10.4.4 Other Differences

	Date and Time
	11.1 External and Internal Time
	11.1.1 External Time
	11.1.2 Internal Time

	Timers
	12.1 Starting a Timer
	12.1.1 Syntax
	12.1.2 Example

	12.2 Querying a Timer
	12.2.1 Syntax

	12.3 Manipulating a Timer
	12.3.1 Syntax

	12.4 Canceling a Timer
	12.4.1 Syntax
	12.4.2 Notes

	References
	A.1 References

	Keywords
	B.1 Keywords

	Syntax Summary
	C.1 Language Constructs
	C.1.1 Control Logic
	C.1.2 Instance Creation
	C.1.3 Instance Selection
	C.1.4 Writing Attributes
	C.1.5 Reading Attributes
	C.1.6 Instance Deletion
	C.1.7 Creating Instances of a Relationship
	C.1.8 Deleting Instances of a Relationship
	C.1.9 Instance Selection by Relationship Navigation
	C.1.10 Creating Events
	C.1.11 Generating Events
	C.1.12 Accessing Event Data
	C.1.13 Arithmetic, Logical, and String Assignment
	C.1.14 Unary Operators
	C.1.15 Operations
	C.1.16 Bridges
	C.1.17 Functions
	C.1.18 Object Action Language for Non-State Actions
	C.1.19 Date and Time
	C.1.20 Timers

	C.2 Statement Components
	C.3 Production Rules

	Index

