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1

Why Revise the Shlaer-Mellor Method?

Sally Shlaer
Neil Lang

Since the last published statement of the Shlaer-Mellor method of Object-Oriented Analysis, a
certain number of questions have come forward.  These questions range in nature from clarifi-
cations required on basic conceptual matters to detailed inquiries involving extremely fine
points of the method.  At the same time, as a result of extensive work on client projectsespe-
cially those employing the latest generation of Shlaer-Mellor automation toolswe have made
some adjustments and, we believe, improvements to the method.

1.1  Goals

The purpose of this report is to state the rules of OOA as currently defined.  We call this state-
ment OOA96; it is the statement of OOA that will be relied upon by the upcoming book on
Recursive Design.  In developing this statement, we have held four primary goals:

■ To define OOA96 so that it is self-consistent.

■ To define OOA96 so that it is as consistent as possible with OOA91 (as defined by
Object Lifecycles) while, at the same time, incorporating lessons learned from a broad
spread of client projects.

■ To improve the rigor of the method and to tie up various loose ends.

■ To ensure that correct OOA models make clear delineations of domain boundaries.

1.2  Role of the Report

The material given here adds to and supersedes portions of that presented in Object Lifecycles:
Modeling the World in States.  As a result, we rely upon the reader's familiarity with the
details provided in that work.  We have not attempted to provide here a complete and inte-
grated presentation of the method as defined today; such a publication is planned for later in
the year.

1.3  Dimensions of the Method

We distinguish between several dimensions of the method, as follows:

Formalism.  First and foremost, OOA96 is a mathematical system, built up of axioms, defini-
tions, and theorems.  We refer to this mathematical system as a formalism, using the word in
much the same way as do mathematical physicists.  Note that this report is almost entirely
concerned with the formalism.
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Representation.  Associated with the formalism is a representation, or notation:  A defined
way to depict the entities of the formalism.  The notation that we use has been designed for
readability and for ease of use.  We have found it necessary to make only a few minor adjust-
ments to the OOA91 notation.

We want to emphasize that we do not attach great significance to the particular notations
employed in the work products of OOA.  Hence if a CASE vendor chooses to adopt some vari-
ant  representationperhaps  for  compatibility with other tools or for ease of implementation
this does not, in our opinion, detract from the usefulness of the toolset.

Work products.  OOA is laid out in a series of steps, each of which is designed to produce cer-
tain work products.  The steps and work products of OOA96 are the same as those of OOA91
with the following exceptions:  (1) The format of the Event List has been slightly modified to
account for polymorphic events and (2) a small additional work product has been defined to
allow explicit integration of domains.

Techniques.  Techniques are procedures and processes conducted by software developers in
order to elicit information, develop conceptualizations, etc.  Techniques (such as preparation
of technical notes, object blitzes, examination of use cases, interviews and the like) are gener-
ally not associated directly with the production of a particular work productor even with a
particular method.  The scope of this report does not cover techniques:  such a publication
remains to be prepared. 

1.4  Acknowledgments 

Virtually all of Project Technology's instructors, consultants, and architects have contributed
their capabilities and experiences to the definition of OOA96.  In particular, we wish to thank
Howard Kradjel, Kent Mingus, Gregory Rochford, Phil Ryals, John Wolfe, and John Yeager for
leading numerous spirited debates and thereby forcing us all to clarify our thoughts.
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2

Dependence Between Attributes

Sally Shlaer
Neil Lang

There are three kinds of dependencies that may pertain between attributes on the Information
Model (IM).  This chapter describes these dependencies and explains how they are repre-
sented on the graphic form of the IM.

2.1  Functional Dependence

Functional dependence forms the basis of the relational model of data, upon which OOA's
rules of attribution are based.  This section extracts a few of the results of the relational model1

to establish some basic principles of OOA.  

2.1.1  Structure of an Object

We start out with an axiom:

This axiom ensures that (1) the tabular representation can be used to depict all instances of an
object and (2) that an attribute has no internal structure.  As a result, an OOA object is a rela-
tion of first normal form in the relational model.

2.1.2  Relationships Between Attributes

Functional dependence has to do with what you have to know in order to determine the value
of an attributethat is, how tightly attributes are related to one another in terms of their mean-
ings.  

This idea, which is very simple and intuitive for an OOA practitioner, is much more difficult
for a practitioner schooled in the relational model.  The difference is this:  An OOA practitio-
ner starts with the idea of an object as a conceptual entity that can be characterized by
attributes; these attributes are tied together in the sense that they characterize the same object.

1. For a more complete presentation, see any standard database text.  Especially recommended is 
C. J. Date's An Introduction to Database Systems, second edition, Addison Wesley, 1977.

AXIOM (Structure of an object):  For any OOA object P:

■  Every instance of P can be represented by a tuple.

■  The domain underlying each attribute of P consists of atomic values only.
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However, the relational modeler starts with relations made up of arbitrary sets of attributes,
and is tasked with moving these attributes around between relations until certain “normaliza-
tion flaws” have been removed.  As a result, the relational modeler must consider issues that
would never occur to the OOA practitioner (such as the case of multi-valued dependency.  See
database textsparticularly Ullman, Principles of Database Systems, Computer Science Press,
1982for examples of this “problem;” such examples seem quite paradoxical to the OOAer).

In order to do his work, the relational modeler relies on the following: 

So when we say that B is functionally dependent on A, we mean that there is a reason that
guarantees that we can determine the value of attribute B given only the value of attribute A.
This reason must be based on the world being modeled (we know that given a dog's name—
that is, attribute A—we can determine the dog's weight) and must be of such a nature that it
holds for any imaginable instance of the object under consideration.

The definition of functional dependence can be expanded to account for sets of attributes; this
is necessary to account for compound identifiers.

2.1.3  Proper Attribution

By our definition of proper attribution, any OOA object is in fourth normal form.

In OOA, we commonly say that “the attributes of an object are mutually independent.”  What
is meant by this statement is the following:

DEFINITION (Functional dependence on an attribute):  Suppose that we have two 
attributes A and B.  Then attribute B is said to be functionally dependent on attribute 
A if and only if given the value of attribute A (and observational access to instances 
in the world being modeled), one can determine exactly the value of attribute B.

DEFINITION (Functional dependence on a set):  Suppose we have a set of attributes 
called A and an attribute B.  B is not a member of A.  Then B is said to be functionally 
dependent on A if and only if given values for all the attributes in A (and observa-
tional access to instances in the world being modeled), one can determine exactly the 
value of attribute B.

PRELIMINARY DEFINITION (Proper attribution):  An OOA object P is said to be properly
attributed if and only if

■ Every attribute of P that is not part of any identifier of P is functionally depen-
dent on a complete identifier of the object and not on any proper subset of that
identifier.

■ If an attribute B of P is functionally dependent on a set A of attributes of P, then
A is an identifier of P.

THEOREM (Mutual functional independence of attributes):  Given a properly attributed 
OOA object and two attributes R and S of that object.  Neither R nor S is part of an 
identifier.  Then R is not functionally dependent on S.



 Copyright 1996 by Project Technology, Inc.  7  OOA96 Report
    All rights reserved. Version 1.0

The proof of this theorem is easy to establish:  Suppose that R is functionally dependent on S.
Then by the definition of proper attribution, S must be an identifier of the object, contrary to
the hypothesis.  Therefore, R is not functionally dependent on S.

2.2  Stochastic Dependence

Suppose we have an object

Coin Toss (trial number, time of trial, coin 1, coin 2)

The domain of coin 1 is {H, T}, as is the domain of coin 2.  Now we conduct experiments by
taking a pair of coins and tossing them in the air.  Then we record the results.  

It is clear that this object is in fourth normal form, and that coin 1 and coin 2 are functionally
independent of one another.  But, in addition, coin 1 and coin 2 are said to be stochastically
independent of one another:  that is, knowing the value of coin 1 gives us no clue to the value
of coin 2.  Probabilists talk about this state of affairs as follows:

Pr[ coin 2 = H | coin 1 = H ]  = Pr[ coin 2 = H ]

and you read it as “the probability that coin 2 = H (assuming that I already know coin 1 = H) is
the same as the probability coin 2 = H (assuming I know nothing about coin 1).”  That is, the
value of coin 1 has no predictive power as to the value of coin 2.

Now, in the context of a grade school, consider the object:

School child (student ID, grade, height, weight)

The object is properly attributed, and grade, height, and weight are mutually functionally
independent.  However, they are not stochastically independent:  I could observe a number of
students and make a scatter plot of height vs. grade.  Then, if you come in with a new student
and tell me what grade the student is in, I can make a better-than-random guess of the value of
his height.  

Pr [ height > h | grade = g ]  ≠  Pr [ height > h ]

One can therefore say that the value of grade has predictive power as to the value of height, or
that height and grade are correlated.

In summary, it is entirely legal for an OOA object to contain attributes that are stochastically
dependent upon other attributes of the same object, so long as the rules involving functional
dependency are observedthat is, so long as the object is properly attributed.

DEFINITION (Stochastic dependence and independence):  Two attributes A and B are
said to be stochastically independent if and only if

      Pr[ A=a | B=b ] = Pr[ A=a ]

Two attributes that are not stochastically independent are stochastically dependent.
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2.3  Mathematical Dependence

Consider the objects

Material ( material ID, density, . . . )

Sample ( sample ID, weight, volume, material ID(R) )

These objects are both in fourth normal form.  There is, however, an obvious violation of the
concept of “one fact in one place:”  given density and weight, we can determine volume.
There are two points to ponder:

■ Any one of these attributes is mathematically dependent on the other two.  This does
not constitute a violation of normalization because the attributes are in different objects.

■ This is a stronger form of dependency than functional dependency:  We do not need
access to instances in the world being modeled in order to determine the value of the
third attribute.

Because attributes of this nature arise fairly commonly in applications, we incorporate the
standard definition of mathematical dependence into OOA:

Now suppose we have an object

Crate ( crate ID, width, height, depth, volume, destination, . . . ) 

Is Crate in fourth normal form?  Because the relational model does not take into account the
concept of mathematical dependence, this question cannot really be answered satisfactorily.
However, we can produce structures compatible with the relational model:

Rectangular Solid ( width, depth, height, volume )

Crate ( crate ID, width (R), depth(R), height(R), destination, . . . )

These two objects are properly normalized, but at a cost.  You can think through about how
you would want to keep the Rectangular Solid table up to date, and whether or not you would
want to keep entries that describe volumes of non-existent crates.  But in any case, you would
have to search the table every time you added a crate.  In summary, creating a Rectangular
Solid table is not an engineering-style solution.

 We resolve this situation as follows:

■ If the model contains a set of attributes that are related through a formula or algorithm,
determine a proper subset of these attributes to act as independent variables.  Mark the
remaining attributes in the setthe dependent variableswith an (M) following the
attribute name, as shown in Figure 2.1.  This is to be done regardless of whether or not
all the attributes in the set are attributes of the same object.  

■ In the description of an attribute that represents a dependent variable, cite the formula
or algorithm used to determine the value of the attribute.

DEFINITION:  An attribute Y is said to be mathematically dependent on a set of 
attributes X if and only if, given values of the attributes in X, the value of Y can be 
determined by a formula or algorithm. 
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Figure 2.1:   Mark a mathematically dependent attribute with an (M) following the name
of the attribute.

Finally, inclusion of mathematically dependent attributes requires us to refine our definition
of proper attribution.

FINAL DEFINITION (Proper attribution):  An OOA object P is said to be properly attrib-
uted if and only if

■ Every attribute of P that is not part of any identifier of P is functionally depen-
dent on a complete identifier of the object and not on any proper subset of that
identifier.

■  If an attribute B of P is functionally but not mathematically dependent on a set
A of attributes of P, then A is an identifier of P.

1.  CRATE

* Crate ID
Width
Height
Depth
Volume (M)
Destination

●

●

●

●

●

2.  SAMPLE

* Sample ID
Weight
Volume (M)
Material ID (R6)

●

●

●

3.  MATERIAL

* Material ID
Density●

describes

C is described
by

R6
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3

Relationship Loops

Neil Lang

During the course of building an Information Model, an analyst may add a relationship
between two objects that are already connected by a chain of relationships.  In so doing,  the
analyst creates a loop of relationships.  In this chapter we discuss a set of issues that require
consideration when forming loops of relationships.  In particular we discuss when to form
loops,  the need to characterize such loops as dependent or independent,  and how to repre-
sent such loops in the OOA Models.

3.1 Loops of Relationships

When abstracting a relationship that closes a loop of relationships,  the analyst first needs to
verify that the relationship is required.  Does it capture an association not already captured by
the other relationships in the loop?  Consider the fragment of an Information Model in Figure
3.1 in which relationship 

R3:  Parent RAISES CHILD WHO ATTENDS School 

completes a loop with 

R1:  Parent RAISES Child   and   R2:  Child ATTENDS School.

But the R3 relationship is nothing more than the concatenation of R1 and R2 and captures no
new associations.  R3 is therefore redundant and should not be added to the model.

Figure 3.1:  R3 is a redundant loop-closing relationship.

On the other hand,  consider the relationship 

R4:  Parent GRADUATED FROM School

in Figure 3.2. Here R4 captures an association that is clearly different from that captured by
the combination of the R1 and R2 relationships.  Therefore R4 is not redundant and it is most
appropriate to add this relationship to the model.

PARENT
is 
raised by

CHILD
is 
attended by

SCHOOLR1 raises attendsR2

is attended
by child raised by

R3

raises child
who attends
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       Figure 3.2: R4 is a non-redundant loop-closing relationship.  This is a “loop of 
independent relationships”.

3.2  Characterizing Loops

Loops of Dependent and Independent Relationships.  In some loops instances of the relation-
ships in the loop are completely independent.  That is, the value of one of more referential
attributes does not constrain the values of the remaining referential attributes.  Consider the
model in Figure 3.2.  Knowing the children being raised by a parent and the schools they
attend does not tell us anything about the school from which the parent graduated.

On the other hand, there are loops in which instances of the participating relationships are
constrained.  Consider the model in Figure 3.3.  Here knowing what children a parent is rais-
ing and the schools they attend indicates something about the school or schools on whose PTA
the parent serves.

A loop of relationships in which the instances of the relationships are unconstrained is known
as a loop of independent relationships while a loop in which the instances of relationships are
required to be constrained is known as a loop of dependent relationships.  Note that it is the
set of relationships composing the loop that we describe as being dependent or independent.
We do not categorize individual relationships in a loop as dependent or independent.

Figure 3.3:  Example of a “loop of dependent relationships”.

Determining Loop Dependency.  Determining the dependency of a loop requires more than
just a cursory inspection of the objects and relationships.  Rather it is the real-world policy
underlying the relationships that governs the loop dependency.  A loop with a given set of
objects and relationships can be either dependent or independent, depending on the underly-
ing policy.  Consider a university in which Professors work for a single Department,  Students
major in one and only one Department,  and Students are advised by one and only one Profes-
sor.  These objects and relationships are captured in the Information Model shown in Figure
3.4.

PARENT
is 
raised by

CHILD
is 
attended by

SCHOOLR1 raises attendsR2

graduated

R4

graduated
from

PARENT
is 
raised by

CHILD
is 
attended by

SCHOOLR1 raises attendsR2

has PTA with

R5

serves on
PTA of
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Figure 3.4:  Fragment of an Object Information Model for a university.

Note that the relationships form a loop,  but it is impossible to determine the dependency of
this loop.  Whether the instances of relationship R2

Professor ADVISES Student  

are required to be constrained by instances of relationship R3

Student MAJORS IN Department 

depends on the rules and policies of the university.  One university (which we'll identify as
University A) allows students to select an advisor from any department regardless of the
department in which the student is majoring, while another university (University B) requires
that students select advisors only from their major department. Understanding the underlying
policy that determines whether a loop of relationships is dependent or independent is an
important part of building the Information Model.  The analyst must build models that cor-
rectly reflect all real-world policies in order to ensure that any design or code derived from
these models permit only those associations allowed by these policies.

3.3  Depicting Loop Dependency

Loops of Independent Relationships.  Once the analyst has determined the dependency of a
loop,  that dependency needs to be expressed in the model itself.  To show that a loop is inde-
pendent, formalize each relationship in the loop separately.  Note that this produces a model
in which the instances of the participating relationships can be populated in a completely
unconstrained manner.  Because the policies at University A require the loop to be modeled as
a loop of independent relationships,  we need to formalize each relationship separately to
complete the model for University A (see Figure 3.5).

1. DEPARTMENT (D)

R2

provides 
specialization 
for

R1

staffed by

on staff of

advised by

advises

* Department ID

3. STUDENT (S)

* Student ID

2. PROFESSOR (P)

* Professor ID

majors in

R3

●

●

●
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  Figure 3.5:  Relationships formalized to indicate a loop of independent relationships.

Loops of Dependent Relationships.  To model a loop of dependent relationships,  first formal-
ize all relationships as usual. Then tag a referential attribute in the object with the most
instances with a “c” to show that its allowable values are constrained by the actual value of
other referential attributes formalizing the loop.  Since the object with the most instances will
almost always have a pair of referential attributes,  we can choose to tag either of them. (See
Figure 3.6 for two ways to build the loop of dependent relationships for University B.)  In
either case, we will also need to document the actual constraint in the object and attribute
descriptions.  Note that this tagging is simply a reminder to the analyst who will still have to
incorporate the constraint formally somewhere in the complete OOA model.  In this example,
the analyst will most likely add extra processing to the state model for the Student object to
check that the advisor belongs to the Department in which the Student is majoring.

       Figure 3.6: Two ways to formalize a loop of dependent relationships using 
constrained referential attributes.

1. DEPARTMENT (D)

R2

provides 
specialization 
for

R1

staffed by

on staff of

advised by

advises

* Department ID

3. STUDENT (S)

* Student ID

Professor ID (R2)
Department ID (R3)

2. PROFESSOR (P)

* Professor ID

Department ID (R1)

majors in

R3

●

●

●

●

●

●

1. DEPARTMENT (D)

R2

provides 
specialization 
for

R1

staffed by

on staff of

advised by

advises

* Department ID

3. STUDENT (S)

* Student ID
Professor ID (R2c)
Department ID (R3)

2. PROFESSOR (P)

* Professor ID
Department ID (R1)

majors in

R3

●

●

●

constrained domain:
  can only be a professor
  from student's major
  department

1. DEPARTMENT (D)

R2

provides 
specialization 
for

R1

staffed by

on staff of

advised by

advises

* Department ID

3. STUDENT (S)

* Student ID
Professor ID (R2)
Department ID (R3c)

2. PROFESSOR (P)

* Professor ID
Department ID (R1)

majors in

R3

●

●

●

constrained domain:
  must be same
  as department
  of advisng professor
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In certain cases we may be able to modify the models developed above so that the loop depen-
dency is expressed directly in data.  This would then guarantee that regardless of how the
model was populated the instances of the relationships would always be constrained as neces-
sary.  The two following sections present two situations in which such modification is possi-
ble.

Collapsed Referentials.  Consider what occurs if we replace the arbitrary identifiers for the
Professor and Student objects with compound identifiers involving a Department ID (see Fig-
ure 3.7).  When we formalize R2 and R3, we add two sets of referential attributes incorporating
Department ID to the Student object (Major Department ID(R3) and Advisor Department
ID(R2)). 

       Figure 3.7: Formalizing a loop of dependent relationships using compound 
identifiers with constraints.

The loop constraint is now very easy to capture as Major Department ID(R3) must always equal
Advisor Department ID(R2).  We show this (see Figure 3.8)  with Department ID(R2,R3), that is,
a single referential attribute formalizing two relationships simultaneously.  The use of col-
lapsed referentials in loops often allows us to represent the loop dependency directly in data.
Doing so guarantees that whenever we populate the model the constraints are automatically
satisfied.

Figure 3.8:  Formalizing a loop of dependent relationships using collapsed referentials.

1. DEPARTMENT (D)

R2

provides 
specialization 
for

R1

staffed by

on staff of

advised by

advises

* Department ID

3. STUDENT (S)

* Major department ID (R3C)
Student number in
department
Advisor Department ID (R2)
Professor number in
department (R2)

2. PROFESSOR (P)

* Department ID (R1)
Professor number
in department

majors in

R3

●

●

*

*

1. DEPARTMENT (D)

R2

provides 
specialization 
for

R1

staffed by

on staff of

advised by

advises

* Department ID

3. STUDENT (S)

* Department ID (R2, R3)
Student number in
department
Professor number
in department (R2)

2. PROFESSOR (P)

* Department ID (R1)
Professor number
in department

majors in

R3

●

*

*
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Composed Relationships.  Another special case occurs when the constraint on the referential
attribute is such that it identifies a single instance of the associated object.  Consider the model
for University B (right half of Figure 3.6) in which we choose to constrain the R3 referential
attribute in the Student object.  Here the constraint identifies a single instance of the associ-
ated instance of Department.  This is equivalent to requiring that the query across R2 (to deter-
mine a student's advisor) followed by a query across R1 (to determine the professor's
department) must always produce the same result as the query directly across R3 (to determine
a student's major department).  When the two sets of queries must produce the same single
instance,  we can declare the loop-closing relationship to be formalized by the query along the
other relationships in the loop.  Such a relationship is said to be composed and is indicated by
the R3 = R2 + R1 in Figure 3.9.  Since composition of relationships tracks queries across rela-
tionships, a composed relationship does not require referential attributes.

This notation R3 = R2 + R1 is not intended to convey that the relationship R3 means the same
as the combination of relationships R1 and R2.  Otherwise R3 would be redundant and should
not be added to the model.    

Figure 3.9:  Formalizing a loop of dependent relationships using composition of relationships.

Composition of relationships captures the constraint directly in data and the model as it
appears in Figure 3.9 will always guarantee that a student's  major and advising departments
are the same.  However the use of composition is limited in that it requires that the constraint
always identify a single associated instance.  If R2 were conditional (say a student is not
required to have an advisor)  then we cannot compose R3 since there would be no guarantee
that we could actually complete the query across R2.  Furthermore not every relationship in a
loop can be composed.  Consider what happens if we try to compose R2 instead of R3.  This is
equivalent to asserting that the query across R2 (to determine a student's advisor) is equivalent
to the queries across R3 and R1.  This pair of queries identifies only a set of professors who
belong to the major department.  However it does not identify a single professor who serves as
the advisor.  This is what we expect since the corresponding constraint in Figure 3.6 involves
a set of allowable instances of professor.

1. DEPARTMENT (D)

R2

provides 
specialization 
for

R1

staffed by

on staff of

advised by

advises

* Department ID

3. STUDENT (S)

* Student ID
Professor ID (R2)

2. PROFESSOR (P)

* Professor ID
Department ID (R1)

majors in

R3 = R1 + R2

●

●

●

composed relationship
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3.4  Summary

Adding a relationship that closes a loop in an Information Model requires that the analyst first
verify that the relationship is not a redundant relationship.  Then he or she must understand
the underlying real-world policy in order to determine whether the loop is a loop of depen-
dent or independent relationships.  If the loop is an independent loop,  formalize each rela-
tionship in the loop separately.  If the loop is a dependent loop,  use either constrained
referential attributes,  collapsed referentials, or composition of relationships as appropriate to
capture the loop constraints.  This effort ensures that the model reflects all real-world con-
straints correctly.  Furthermore any design and code produced by translating the analysis
model will then automatically incorporate such constraints.



OOA96 Report 18     Copyright 1996 by Project Technology, Inc.
Version 1.0 All rights reserved.



 Copyright 1996 by Project Technology, Inc.  19  OOA96 Report
    All rights reserved. Version 1.0
   

4

Reflexive Relationships

Neil Lang

In the Shlaer-Mellor method, relationships are abstractions of associations that hold systemat-
ically between instances of objects.  Analysts usually recognize associations between instances
of different objects and abstract the corresponding relationships.  Occasionally an analyst
models a relationship that abstracts systematic associations between instances of the same
object.  In OOA96 we refer to such relationships as reflexive and in this chapter we will dis-
cuss a variety of ways to model reflexive relationships.

4.1 Role of Instances in Reflexive Relationships

Consider the following reflexive relationship: 

 Employee WORKS WITH Employee  (Mc:Mc) 

The order of the associated instances is not significant.  ‘Fred works with Ginger’ conveys the
same fact as ‘Ginger works with Fred’.  The instances play identical roles, and the multiplicity
and conditionality of the relationship must be the same from the perspective of each of the
participating instances.  We refer to such reflexive relationships as non-directional or role-
symmetric.

Now consider the following reflexive relationship:

 Employee SUPERVISES Employee  (1:Mc)

In this case, the order of the instances is significant:  ‘Lou supervises Mary’ is very different
from ‘Mary supervises Lou’.  Each instance in a relationship assumes a specific role.  One
instance of Employee is a supervising employee while the other is an employee being super-
vised.  Furthermore the multiplicity and conditionality of such relationships can be different
at each end.  An employee being supervised must have exactly one supervisor while a super-
vising employee may supervise one or more employees.  Such a relationship has a very direc-
tional character; we term it asymmetric.

4.2  Modeling Symmetric Reflexive Relationships

On the Information Model, show a symmetric relationship with a relationship line that loops
back to the object.  Since, by definition, such a relationship must have the same name, multi-
plicity, and conditionality at each end,  name and characterize the relationship at one end
only.  To ensure that an instance of the relationship appears only once in the model,  always
formalize the relationship with an associative object regardless of the multiplicity of the rela-
tionship itself.  In Figure 4.1 we show the Employee WORKS WITH Employee relationship so for-
malized.
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Figure 4.1:  Symmetric relationship formalized according to OOA96.

4.3  Modeling Asymmetric Reflexive Relationships

Asymmetric reflexive relationships should be modeled using subtypes to capture the differing
roles played by the participating instances.  One way to do this for the Employee SUPERVISES

Employee (1:Mc) relationship is to subtype the Employee object into three subtypes: Employ-
ees who are supervised only (and have no supervising role),  employees who supervise only
(and have no supervisor),  and employees who assume both roles in different instances of the
relationship.  Next abstract two role supertypes:  Employee as Supervisor and Employee as
Supervisee as shown in Figure 4.2.

Figure 4.2:  Modeling a reflexive relationship using a full set of subtypes.

Abstracting the various roles allows us to model the meaning of an Employee SUPERVISES

Employee (1:Mc) relationship explicitly between the differentiated role objects.  In our exam-
ple this meaning is now cast as Employee As Supervisor SUPERVISES Employee As Supervisee.
Note that we can now capture the desired conditionality and multiplicity very directly and
clearly.
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We need to use this form whenever the three subtypes have different characteristics.  Mid-
Level and Top-Level Supervisors may have additional attributes as a result of their respective
responsibilities.  In cases where two or more of the subtypes have no distinguishing attributes,
we can use a partially collapsed form of the model as shown in Figure 4.3.  Here we replaced
Top-Level Supervisor and Mid-Level Supervisor with Supervisor.  We now have one subtype
to represent those employees who are only supervised (Staff)  and one subtype for those
employees that do some supervising (Supervisor).  When we do this, we model the SUPERVISES

relationship between one of the subtypes and the supertype.  Note that we also had to make
the relationship conditional since not all instances of Employee (the supertype) are necessarily
supervised.

Figure 4.3:  Modeling a reflexive relationship using a partial set of subtypes.

Let us consider one more example.  Suppose that we wish to capture the design of an archery
target as a series of concentric nested rings.  Figure 4.4a represents our first attempt to model
this situation.  This model succeeds in capturing the dimensions of the outer rings (the inner
diameter of a ring is the same as the outer diameter of the ring it surrounds), but it fails to treat
the central “ring”—the bullseye—correctly:  (1) the central ring doesn’t surround any ring and
(2) the inner diameter of the central ring is zero.  Since this relationship has an asymmetric
nature (Ring 3 SURROUNDS Ring 2 means something very different from Ring 2 SURROUNDS Ring
3) we now model it using subtypes.  In Figure 4.4b we recast the model using two subtypes:
Innermost Ring and Surrounding Ring.  Note how this version of the model allows us to cap-
ture the fact that the innermost ring does not surround another ring, something that was
impossible with the form in Figure 4.4a.  In addition, by separating out the innermost ring, we
have made it possible to apply a different policy to it.  Should we want to calculate the area of
each ring, we can use one formula for the bullseye and a different formula for the outer rings.

Figure 4.4a:  A weak model of the rings of an archery target.
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Figure 4.4b:  A more accurate model for the archery target.

4.4  Summary

Modeling reflexive relationshipsthose that involve associations between instances of the
same objectrequires some additional considerations.  Inspect typical associations to deter-
mine whether the order of associated instances is significant.  For symmetric relation-
shipsthose in which the order of related instances is not significantdraw the relationship
line to loop back to the object and name and characterize the relationship at one end only.  For
asymmetric relationshipsthose in which each instance assumes a different role in the rela-
tionshipabstract additional subtypes and model the relationship between the supertype and
one of the subtypes.
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5

Events

Sally Shlaer
Neil Lang

The concept of an event remains the same as in OOA91.  However, some rules have been
strengthened to eliminate certain rare ambiguous cases.  In addition, the formalism has been
extended to include the concept of polymorphic events.

5.1  Event Labels

Object Lifecycles (p. 42) suggests two different conventions for assigning event labels.  Because
one of these conventionsdestination-based labelinghas been virtually universally adopted
by the user community, we now promote the convention to a rule:

5.2  Data Carried by an Event 

In OOA91, an event could carry supplemental data as well as an identifier of the instance to
which it was directed.  These two types of event data remain in OOA96; the only difference is
that we now make a precise distinction between them on the models.

The syntax for an OOA96 event is

E1:  event meaning ( identifying attribute(s); supplemental data item(s) )

where either the identifier or the supplemental data items (or both) may be missing.  Hence an
event directed to an existing instance has one of the forms

E2:  event meaning ( identifying attribute(s); )

E3:  event meaning ( identifying attribute(s); supplemental data item(s) )

while an event directed to a single-instance assigner1 may have either of the forms

E4:  event meaning ( ; supplemental data item(s) )

1. The assigners that were defined in OOA91 are  now known as single-instance assigners.  OOA96 
also allows for multi-instance assigners.  See Chapter 7.

RULE (event labeled by destination):  If a non-polymorphic event is directed to
an object, the label of that event must begin with the key letter of that object.
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E5:  event meaning ( ; ) 

Finally, because a creation event is not directed at an existing instance, it has the form

 E6:  create instance ( ; supplemental data item(s) ).

In this case, it is likelybut not requiredthat values for the identifying attributes for the
instance to be created will be carried in the supplemental data items.

5.3  Event List

Now that we distinguish between identifying attributes and supplemental data carried by an
event, the format of the Event List becomes:

The Destination column has been removed from the event list because, as a result of the event
labeling rule of Section 5.1, it is now redundant with the Event Label column.

5.4  Same Data Rule 

Now that the form of an event has been defined more precisely, the “same data” rule (Object
Lifecycles, page 43) is modified as follows:

5.5  Events Within a Domain

Events generated in an action in a domain must be received by an instance in the same
domain.  It is no longer permitted to generate an event that is intended for an object in another
domain.  

For information about communication between instances in different domains, see Chapter 9.

5.6  Order of Receiving Events

In OOA91, the only rule regulating the order in which events are received applied to events
transmitted between a single sender/receiver pair.  In all other cases OOA91 made no assump-
tions, and the analyst was directed to ensure that the state models operated properly regardless
of the order in which events were received.  

Label Meaning Identifying 
attributes

Supplemental 
data Source(s)

V1 Button pushed oven ID (none) button
L1 Turn on light light ID (none) oven

A5 create account (none)
customer ID,
deposit amount

external

. . . . . . . . . . . . . . .

RULE (same data for a transition): All events that cause a transition into a particular 
state must carry exactly the same event data identifying attributes and the same sup-
plemental data items.
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However, in some cases this policy required the analyst to provide additional logic that had no
real value in the domain under consideration.  To remedy this problem, OOA96 imposes an
additional rule:

5.7  Polymorphic Events

5.7.1  Concepts

Figure 5.1 shows a fragment of an Information Model in schematic form.  Let us suppose that
we have defined lifecycle state models for objects T, U and V.  Object S, the supertype of T, U
and V, has no lifecycle model.

       Figure 5.1:  C would like to generate an event to an instance of a subtype of S.  
C has the identifier of the instance, but does not know what 
subtype the instance belongs to.

Now suppose that an instance of object C would like to generate an event to an instance of S
(and therefore to an instance of one of the subtypes of S).  C knows the identifier of the
intended recipient, but doesn't know what subtype the intended recipient belongs to.  

This situation is analogous to the notion of polymorphism in OOP, in which one would like to
invoke a particular method of a child class.  Each child class has its own version of the
method, and all the caller knows is the name of the method and the fact that the instance of
interest belongs to a child class of a known parent class.  In such a case, an OO language
allows one to invoke the method as if it were a method of the parent class.  The semantics of
the programming languageand therefore its inherent mechanismsensure that a method of
the same name in the appropriate child class is actually invoked.  Such an invocation is
known as a polymorphic invocation.

In OOA96, we allow for the concept of “polymorphic events.”  Returning to our example, we
allow C to generate an event that appears to be directed at the supertype S, but which will, in
fact, be received by an instance of one of the subtypes T, U or V.

5.7.2  Defining Polymorphic Events

Naming a polymorphic event.  A polymorphic event has multiple event labels.  The label
used by the sender employs the key letter of the supertype that is the apparent recipient.  The

RULE (expedite self-directed events):  If an instance of an object sends an event to 
itself, that event will be accepted before any other events that have yet to be 
accepted by the same instance.

S C

T U V
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labels used by the true recipients employ their own key letters.  Hence in the example of Fig-
ure 5.1, the sender (object C) labels the event with an S, while the true recipients know this
event by, say, T3, U1, and V6.

Polymorphic event table.  To define the relationship between the polymorphic event and the
actual events as known to the true recipients, the analyst must prepare a polymorphic event
table as shown below.  This table, like the event list, applies to the entire domain.

It is the analyst's responsibility to supply true event labels so that a polymorphic event can be
received by every instance of the supertype, regardless of which subtype the instance also
inhabits.

Because the polymorphic event label is only an alias for the true event labels, the following
rule applies to all polymorphic events.

State models.  To specify the generation of a polymorphic event, an action description in the
state model of C must contain

generate S1*:  event name ( S ident; )

The purpose of the asterisk is simply to remind the reader of the model that the event is poly-
morphic, and that the true recipient of such an event is not the object implied by the event
label. 

Object Communication Model.  Like any other event, a polymorphic event is shown on the
Object Communication Model (Figure 5.2) as a labeled arrow from the sender of the event to
the true (and not the apparent) receiver.  Note that the arrows are  annotated with the event
labels known by both the sender and the various true receivers.  Object S does not appear on
the OCM because, in this example, we are assuming that S doesn't have a state model.

       Figure 5.2:  Object Communication Model showing the polymorphic event S1 and 
the related true events T3, U1, and V6.

Polymorphic 
(sender's) label

True                   
(recipient's) label

S1 T3
S1 U1
S1 V6
. . . . . .

RULE (same data for polymorphic aliases):  If two or more true events are aliased to 
the same polymorphic event, the true events must carry values for exactly the same 
identifying attributes and the same supplemental data items.

C

T U V

T3=S1

U1=S1 V6=S1
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This leads to a very important point:  the state model  (if anysee further discussion below) of
the supertype object plays no role in the routing of a polymorphic event.  This chore is specif-
ically defined as a mechanism within the formalism of OOA.  

5.7.3  Can an Instance Have More Than One State Model?  

Figure 5.3 depicts a structure in which a single instance of an object (in this case, an instance
of S) has two separate and different state models.  Should this be legal in OOA?  We have two
answers:  one based on experience, and one based on theory.  

Figure 5.3:  Can an instance have more than one state model?

The experience-based answer says no.  In the models we have seen showing this kind of con-
struction, we have found other seemingly unrelated analysis errors.  When the models were
reconstructed to eliminate these errors, the need for multiple state models disappeared.  Hence
experience indicates that multiple state models for a single instance is unlikely to make sense.  

On the other hand, theoretical arguments have not yet provided us with a definitive answer
yea or nay.  In particular, we haven't been able to prove that a multiple state model construc-
tion would necessarily lead to an inconsistency in the model.  However, we have also not been
able to come up with a reasonable interpretation of such a construction:  What could it mean
for an instance to have multiple lifecycles?  So, while theory does not provide us with a con-
clusive answer, it tends to indicate that the answer should be “yes”.

Hence, faced with this division of evidence, for OOA96 we continue to advise:

1. Avoid, if you can, constructing a model in which a single instance has multiple state
models.

2. If an instance must have multiple state models, make sure that the state models are
independent of one another—that is, that an action in one state model does not need to
know what state the instance occupies in its other state model in order to operate cor-
rectly.

S

A B

X Y

state 
model 
here

state 
model 
here

state 
model 
here

state 
model 
here
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6

The FSM Mechanism

Sally Shlaer

This section describes the FSM mechanism of OOA96.  This mechanism is used to process the
events that drive object instances through their lifecycles, as well as to process those events
that are directed at assigner state machines.  The mechanism described here is very similar to
that used in OOA91; it has been modified only (1) to account for the classification of event
data into identifying attributes and supplemental data, (2) to support polymorphic events and
(3) to allow for multiple instances of an assigner.

6.1  Tables Supplied by the Analyst

The FSM mechanism1 of the OOA formalism requires that a table be specified for every finite
state machine in the model.  This tablethe state transition table supplied by the analyst
has the form

where the Si are states and the Ek are events (both appropriately labeled for the state machine 
of interest).  The Tik entries indicate either “event ignored”, “cannot happen”, or the new state 
to which the instance of an object or assigner is to transition.

In addition, the analyst must supply the polymorphic event list (see Chapter 5) to define poly-
morphic events together with their aliases.  

6.2  Static Event Checking

The FSM mechanism as defined in Section 6.3 makes certain assumptions about the events
that are submitted to it for processing.  These assumptions can be verified by static checking of
the OOA models.  The required checking is presented in Figure 6.1.

1. A finite state machine, as defined in most writings on automata, applies to a single entity that is 
presumed to exist for all time.  Because so many real world problems require instances to come 
into and fall out of existence, OOA requires an extension the traditional definition—hence this 
chapter.

E1 E2 . . . Ek . . . En

(none) T01 T02 . . . T0k . . . T0n

S1 T11 T12 . . . T1k . . . T1n

S2

Si Tik Tin

. . .
Sm Tm1 Tm2 . . . Tmk Tmn
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Key letter corresponds to . . .?

Active object or multiple instance assigner:
Does event appear in STT?

yes:
Is there a 'can't happen' entry for this event in the 'none' row?

yes:  (event is a non-creation event)
Does the event carry identifying attributes?

yes:OK
no: ERROR (a non-creation event must have identifying attributes)

no:
Is there a 'event ignored' entry for this event in the 'none' row?

yes: ERROR (only valid entries in 'none' row are 'can't happen' or 'new
  state')
no:

Is there a 'new state' entry for this event in the 'none' row only?
yes:  (event must be a creation event)

Does the event carry identifying attributes?
yes:ERROR  (creation event incorrectly formed)
no: OK

no: ERROR  (a non-creation event is also a creation event)
no: ERROR (undefined event)

Passive object:  (checking a possibly polymorphic event)
Is object a supertype?

yes:
Are there complete entries for this event in the polymorphic event table?

yes:
Does the event carry identifying attributes?

yes:OK
no: ERROR.  (polymorphic event cannot be a creation event)

no: ERROR  (aliases not completely defined)
no: ERROR (polymorphic event must carry identifier of supertype)

Single-instance assigner:
Does event appear in STT?

yes:
Is there a 'can't happen' entry for this event in the 'none' row?

yes:  (event is a non-creation event)
Does the event carry identifying attributes?

yes:ERROR   (events to single-instance assigners cannot have identifying
  attributes)
no: OK

no: ERROR  (creation events to single-instance assigners are not allowed)
no: ERROR (undefined event)

Otherwise: ERROR (event to non-existent object)

       Figure 6.1:  Static checking for events.  This check is done at analysis time 
to verify that all events in the models can be processed by the 
FSM mechanism.

6.3  The Algorithm of the FSM Mechanism

Each event is submitted to the FSM mechanism, which determines to which object or assigner
the event is directed and then to which instance of that object or assigner.  As a result of the
static checking performed earlier, we know that:

■ Any event submitted to the FSM mechanism bears the key letter of an object or assigner.

■ Any polymorphic event can be delivered (provided that the targeted instance exists).

■ Any event directed to a single-instance assigner carries no identifying attributes. 

The algorithm of the FSM mechanism is given in Figure 6.2.  Note that in OOA96, it is the
responsibility of the FSM mechanism to maintain the current state of all instances in the model
that have state machines.  This is consistent with the policy (see Chapter 9) that makes “current
state” part of the formalism itself so that the analyst no longer has the need (or capability) to set
the current state of an instance directly.
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Is the event polymorphic?
yes:

Find instance in supertype object corresponding to polymorphic event label.  
Find same instance in some subtype. 
Find true event label corresponding to the identified subtype in the polymorphic event table.  
Using this event as the submitted event, go to 'Key letter corresponds to'

no:
go to 'Key letter corresponds to'

Key letter corresponds to:
active object or multiple-instance assigner:

Does the event carrying identifying attributes?
yes:  (non-creation event)

Does the instance exist?
yes:

Find entry in STT corresponding to this event and the instance's current state.
Is entry . . .?

event ignored:  DONE
can't happen:  ERROR
new state:  Set current state to new state and invoke action of new state.

no: ERROR
no: (creation event)

Find entry corresponding to the event in "none" row of the STT.
Is entry . . .?

can't happen:  ERROR
new state:  Invoke action of new state.

single-instance assigner:
Find entry in STT corresponding to this event and the current state.
Is entry . . .?

event ignored:  DONE
can't happen:  ERROR
new state:  Set current state to new state and invoke action of new state.

Figure 6.2:  How events are processed by the FSM mechanism.

6.4  Analysis Errors Detected by the FSM Mechanism

As shown in Figure 6.2, there are two errors that can only be detected by the FSM mechanism.  

■ Can't happen:  If an event is received in a given state and the analyst has declared that
such an event cannot occur when the instance is in that state, then the analysis is defec-
tive and must be repaired.

■ Instance does not exist:  The FSM mechanism has received an event directed at an
instance that does not exist.  This generally indicates an hole in the application protocol
such that events have been received in an order not intended by the analyst:  either the
targeted instance has not yet been created, or it has already been deleted.

■ It is the responsibility of the analyst to develop an application protocol such that events
can be received only in an order that makes sense.  In this case, a solution may be devel-
oped by routing all events to a common recipient through a common sender.
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7

Assigners

Neil Lang

Assigners were introduced in OOA91 to manage the creation of relationships in which there is
competition for instances.  In OOA96 we have made the following changes and extensions to
assigners:

■ Assigners are associated with relationships instead of associative objects

■ Assignment protocols have been modified to reflect the fact that current state is now 
maintained internally by the architecture.

■ The concept of an assigner has been extended to allow for multiple assigners  to permit 
concurrent management of assignments where appropriate. 

7.1  Competitive Relationships

Instances of relationships are often formed and deleted during the lifecycles of interacting
objects.  In many cases the selection of the pair of instances to be related can appear in the
state model of one of the participating objects.  However this will not work in all situations;
consider the Clerk SERVES Customer relationship in Figure 7.1.  If we place the selection of
clerks in the Customer state model, multiple instances of one object (Customer) could all
simultaneously select the same instance of the other object (Clerk).  We refer to this as compe-
tition for instances,  and in OOA96 we refer to relationships such as R3 as competitive rela-
tionships.

Figure 7.1:  Information model for Customer-Clerk problem.

Objects participating in a competitive relationship must have both state(s) in which instances
are available for assignment as well as state(s) in which the relationship exists.  Competitive
relationships must therefore be conditional at both ends.  This was implied but not made
explicit in OOA91.

CLERK (CL)
Clerk ID*●

●

CUSTOMER (CU)
Customer ID*●

●

R3

is
served
by

serves

SERVICE (S)

Clerk ID (R3)
Customer ID (R3)

*●

C

C
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7.2  Assigners for Relationships

The key to managing competitive relationships is the use of a single point of control to assign
instances of the participating objects to each other.  In OOA91 we introduced the assigner as
this single point of control.  The assigner, in OOA91, was a special state model associated with
the associative object formalizing a competitive relationship.  The assigner state model had
one purpose only and that was to create instances of the associative object.  The assigner state
model had nothing to do with the behavior of the associative object.  A separate lifecycle state
model would be developed whenever there was interesting behavior.

An assigner fundamentally creates instances of a competitive relationship.  In OOA96, we
associate the assigner directly with the competitive relationship.  Assigners bear the name of
the relationship, and event identifiers for events directed to an assigner are based on the rela-
tionship number. 

Associating assigners with relationships has two very desirable consequences.  First, the ana-
lyst is now free to choose how to formalize the competitive relationship and is no longer
forced to do so with an associative object.  Secondly, all objects have, at most, one possible
state model:  a lifecycle model.

7.3  Assigner Protocol

In OOA91 the checking and selection performed by an assigner was based on the current state
attribute.  In OOA96 the current state attribute is maintained by the architecture and will be
inaccessible to the application domain models.  Therefore we now must add an attribute to
each of the objects involved in a competitive relationship  to maintain status with respect to its
assignment (we refer to this attribute as availability status).  The analyst defines appropriate
values for these attributes and specifies processing in the state models in the domain being
modeled to manage these attributes.  Figure 7.2 shows the example involving Clerks and Cus-
tomers with availability status attributes added to both the Clerk and the Customer objects.
Also note that we have chosen to formalize the competitive relationship R3 by copying the
identifier of the Customer object into the Clerk object rather than using the previously required
associative object. 

Figure 7.2:  Revised information model for Customer-Clerk problem.

A slightly modified assigner protocol is used:

■ Instances ready for assignment first set their availability status attribute to indicate that 
they are available.

■ They then generate an event to notify the assigner they are available.
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■ The assigner waits until a pair of instances becomes available, selects the participating 
instances, and then sets each availability status attribute to indicate that the instance 
has been assigned.  This protocol requires that only the assigner can set the participating 
availability status to “assigned”.

■ The assigner then creates the instance of the relationship.

■ The assigner then generates the customary set of events to the participating instances.

This protocol is illustrated in the state models in Figure 7.3.

Figure 7.3:  State Models for the Customer-Clerk problem.

The major difference in the OOA96 protocol is that the assigner directly sets the availability
status in the participating instances.  In OOA91, assigners could only signal the participating
instances that they had been assigned.  The assigned instances would change their current
state only after they had accepted the event from the assigner.  Since the current state was set
asynchronously with respect to the assigner, extra processing had to be specified to ensure that
the assigner didn't recognize a previously-assigned instance as still available.  We see that the
new protocol has a major advantage:  the ability of the assigner to change the availability status
of the participating instances synchronously.  This eliminates the need for the double check in
the existing assigner protocol. 
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7.4  Multiple Assigners

The assigner protocol outlined above provides a framework for building assigners,  but says
nothing about selection policy.  In the Customer-Clerk example,  the selection policy could be
simple (assign any available clerk to any waiting customer) or complex (assign preferred cus-
tomers to the more senior sales staff).  In this section we'll examine another type of assignment
policy that permits multiple instances of an assigner to concurrently manage exclusive subsets
of competing instances.

The fragment of the Customer-Clerk Information Model in Figure 7.3 says nothing about the
scope of assignment.  Are we in a small store where any clerk can serve any customer or are we
in a large department store where clerks work in specific departments?  Here the assignment of
clerks to customers is more complicated since idle clerks in household goods are not able to
serve waiting customers in women's shoes.  

To correctly model the case of a store in which clerks are assigned to a single department, first
add to the Information Model a Department object and two new relationships to capture the
facts that clerks work in a single department and that customers shop in a single department.
We could then proceed by creating a single assigner to manage assignments in all departments.
However each department has its own set of clerks and customers that can be assigned inde-
pendently of other departments.  We can take advantage of this by creating a separate assigner
to manage the assignments within each department.  Each of these assigners uses a copy of the
same Clerk-Customer assigner state model in a fashion that is entirely analogous to lifecycle
state machines and an object's state model.

Figure 7.4:  Information Model for Customer-Clerk problem extended to incorporate the Department.

OOA96 creates a new type of assigner called a multiple-instance assigner (or more simply a
multiple assigner) which allows us to do exactly this.  Multiple assigners are associated with
competitive relationships that are part of a loop of dependent relationships.  In many cases the
object with the fewest instances in the loop (the Department object in our example) partitions
the instances of the other objects in the loop into separate equivalence classes.  Each equiva-
lence class is associated with an instance of the partitioning object, and each equivalence class
has a separate instance of the assigner.  Therefore we identify an instance of a multiple
assigner by the identifier of the instance of the corresponding partitioning object.  Events
directed to a multiple assigner carry an identifying attribute just like regular lifecycle events.
Figure 7.5 shows a multiple assigner model for the Clerk-Customer-Department.  There is
almost no change from the single assigner case except that events to the multiple-instance
assigner must carry an identifying attribute.
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       Figure 7.5:  State Models for the Customer-Clerk Department problem using 
multiple assigners.

Given the fact that a single assigner could manage assignments among all the equivalence
classes,  when should an analyst choose to use multiple assigners?  Multiple assigners should
be considered when assignments must be managed as expeditiously as possible.  An assigner
state model may deviate from the simple three state form and extra states may be required to
properly synchronize it with the newly assigned instances.  This extra synchronization can
slow down the effective assignment rate.  Having multiple assigners working concurrently on
separate equivalence classes can improve performance significantly.  Multiple assigners will
be much easier to map to multi-tasking and multi-processor architectures, especially if the task
or processor boundaries coincide with the partitioning objects.
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8

Creation and Deletion of Instances

Sally Shlaer
Neil Lang

Because a particular instance of an object can be created or deleted in either the lifecycle of the
same instance or in the lifecycle of a different instanceof either the same or a different
objectthere are a number of cases that need to be understood in order to construct lifecycles
with the intended behavior.  The purpose of this chapter is to enumerate these cases and to
clarify exactly what occurs in each.

8.1  Time Scope of the Analysis

Every set of analysis models presupposes a particular time frame or time scope.  For example,
in a manufacturing application, one normally assumes that the lathes, milling machines, and
the like simply exist:  they are not created during the manufacturing process that is the subject
of the analysis.  In OOA, such instances are called pre-existing instances.

By contrast, manufactured products are created during the manufacturing process.  Similarly,
units of raw material are introduced into the manufacture, and are therefore also abstracted as
being “created” during the time scope of the analysis.  Although it is extremely common for a
model to contain such objects, there is no special term in OOA for such an object or its
instances. 

8.2  How Instances Are Created:  Axioms and Definitions

Basic concepts regulating the creation of instances are stated in the following axioms and defi-
nitions.

AXIOM (Method of instance creation).  Any instance is created by invoking a cre-
ate accessor1.  This is the only way an instance can be created in the time scope
of the analysis. 

1. Create accessors are discussed in Chapter 9.

AXIOM (Coming into existence).  For an instance that is created during the time scope
of the analysis:

■  The instance does not exist before the create accessor is invoked.

■  The instance does exist after the create accessor completes.
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Note that this axiom specifically forbids Assigners from creating instances of non-associative
objects.  This is consistent with the role of an Assigner in OOA:  to manage competition for
instances across a competitive relationship.

DEFINITION (Self- and non-self creation2):  If an instance of an object is created in the 
action of a creation state in the lifecycle of the same object, we say that the instance 
is self-created.  If an instance of an object is created

■  in an action of the lifecycle of a different object, or

■  in an action of a different instance of the same object's lifecycle,

we say that the instance is non-self-created.

8.3  How Instances Are Created:  Questions and Answers

1.  If an instance is non-self-created, is the actionthe one associated with the state in which
the instance is leftexecuted?

No.  If the analyst wants such an action executed, he or she should either generate a standard
creation event (causing self-creation) or incorporate the desired processing in the action where
the non-self-creation occurs.

2. In earlier papers on OOA, self-created instances were referred to as “asynchronously created” 
instances, and non-self created instances were termed “synchronously created.”  This terminol-
ogy seemed counter-intuitive to a number of analysts; for this reason it has been retired.

AXIOM (Responsibility for creation).  Every instance of a non-associative object that is 
created in the time scope of the analysis is created by the lifecycle of some object. 

DEFINITION (creation state):  If there is a state in an object's lifecycle model where

■  an instance of the same object is (or can be) created, and

■  an event causing the action of the state to be executed contains only supplemen-
tal data

we call the state a creation state.

DEFINITION (creation event):  An event that causes execution of the action of a creation 
state is called a creation event.

AXIOM:  When an instance is created in an action of a creation state (and is not subse-
quently deleted during the same execution of the action) the instance remains in that 
state upon completion of the action.

AXIOM:  If a non-self-created instance is an instance of an active object, the analyst 
must specify the state of the newly created instance.
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2.  Does the action of a creation state have to create an instance of itself (the object whose life-
cycle contains the creation state)?

There must be a create accessor in the action of a creation state, by definition.  The processing
can be such that this accessor is not invoked, or such that this accessor fails to create an

instance3.

3.  Can the action of a creation state delete instances of itself (the object whose lifecycle con-
tains the creation state)?

Yes, if the analyst so desires.

4.  Can the action of a creation state create or delete instances of other objects?

Yes.

5.  Can a state model show a transition from another state into a creation state?

No.  By the definition of a creation state, there must be at least one event that causes execution
of the action of that state.  Such an event must carry only supplemental data.  However, if there
is an event that causes a transition from another state into the same creation state, that event
must carry an identifier of the instance that is to make the transition.  Such a construction is
forbidden by the Same Data rule, as stated in Chapter 5.

Now let us consider the state transition table from Chapter 6, re-drawn below.  Suppose that E1
and E2 are creation events, and that E3, . . ., En are not.  Suppose further that E1 and E2 cause an
instance to be created in states S1 and S2 respectively.  Then:

■ All entries in the “none” row (other than those for E1 and E2) must read “cannot hap-
pen.”  This is a consequence of the fact that E3, . . ., En are not creation events—that is, it
is a consequence of the formalism and not the domain being modeled.

■ All entries in the E1 and E2 columns (other than those in the “none” row) must be “can-
not happen”, since a creation event cannot cause a transition from a state in which the
instance already exists (as discussed in question 5, above).

■ All entries in the remainder of the table must prescribe transitions to the non-creation
states S3, . . ., Sm.

3. A create accessor can fail only when it is supplied an identifier for the instance to be created and 
another instance carrying the same identifier already exists.  This is the only “analysis reason” 
for failure of a create accessor.  There may be, of course, other “design” reasons for creation fail-
ure:  for example, there may be insufficient memory available to store the instance.  Such a fail-
ure must be dealt with in the software architecture domain, and nowhere else.
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6.  Can a creation state create multiple instances of itself?

Yes.  Note that all such instances would be self-created.

7.  Can states other than creation states create instances of the “same” object (where “same”
indicates the object whose lifecycle contains the creation state)?

Yes.  If an instance is created in the action of a state other than a creation state, the instance is
non-self-created.  

8.  In the case of non-self-creation of an active object, how does one specify the state in which
the newly-created instance is to be left?

See Chapter 9.

9.  Is there a concept of a “created state”?  That is, what can one say about a state into which an
active object is non-self-created?

Any state in an object's lifecycle can act as a “created state”.  But remember, non-self-creation
does not cause execution of the action associated with the state in which the newly created
instance is left.

8.4  How Instances Are Deleted:  Axioms and Definitions

The axioms and definitions regarding instance deletion are as follows:

E1 E2 E3 . . . Ek . . . En

(none) S1 S2 cannot
happen

. . . . . . . . . cannot
happen

S1 cannot
happen

cannot
happen

T13 . . . T1k . . . T1n

S2 ” ”

” ”

Si ” ” Tik Tin

. . . ” ”

Sm cannot
happen

cannot
happen

Tm3 . . . Tmk Tmn

AXIOM:  Any instance is deleted by invoking a delete accessor.  This is the only way an 
instance can be deleted.
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8.5  How Instances Are Deleted:  Questions and Answers

1.  Assume that we are using the simultaneous interpretation of time, so that two or more
actions may be executing simultaneously.  Then, if an instance in the midst of executing an
action is non-self deleted, is the action completed before the instance is deleted?

Yes.  The action will continue to execute to completion.  However, by the axiom on ceasing to
exist, the instance ceases to exist upon completion of the delete accessor.  

2.  Does the action of a final state have to delete an instance of itself?

No.  A final state is any state for which there are no transitions out of that state.  The instance
may persist indefinitely in a final state.

3.  Can the action of a final state delete instances of other objects?

Yes.

4.  Can a final state delete multiple instances of the same object?

Yes.  However, recognize that the deletion of any instance other than the one associated with
the executing state model is non-self-deletion.  Incorporating multiple instance deletion is
probably poor modeling.

5.  Can the action of a state other than a final state delete an instance of itself?

Yes.  Suppose you have a state in which a delete accessor is conditionally invoked.  Such a
state can have transitions defined that move a surviving instance onwards in its lifecycle, so
the state is not a final state.

However, if an action specifies unconditional self-deletion, the instance ceases to exist after
the deletion accessor completes and therefore this state cannot accept any events.  Such a state
by definition must  be a final state.

AXIOM (Ceasing to exist):  For an instance that is deleted during the time scope of the
analysis:

■  The instance exists prior to the invocation of the delete accessor.

■  The instance does not exist after the delete accessor completes.

DEFINITION (self- and non-self deletion):  If, in the lifecycle of some object, an instance
of the same object is deleted, we say that the deleted instance was self-deleted.  If an
instance of an object is deleted

■  in an action of the lifecycle of a different object, or

■  in an action of a different instance of the same object's lifecycle,

we say that the instance is non-self-deleted.
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9

Process Models in OOA96

Sally Shlaer
Neil Lang

9.1  Small Changes and Clarifications

Transient data.  In OOA91, data items that were produced by one process and immediately
consumed by another were treated as a special case:  they did not have to be attributed to any
object on the Information Model.  This provided a loophole for the analysis in that both the
meaning and the set of legal values for each such data item were unspecified.  This irregularity
in the formalism is removed in OOA96:

Transient (non-persistent) data is still permitted on ADFDs, but is not to be labeled as such:
the fact that such data need not be stored is shown in the connectivity of the ADFD itself.

This rule underscores a view of the IM as not being a statement of stored data requirements.
However, stored data requirements can be inferred from the ADFDs:  If a data item is never
retrieved from a data store, it need not be stored1.  

Actual parameters.  The data flows appearing on an ADFD are actual (not formal) parameters.
This was implied but not made explicit in OOA91.

ADFDs are directed acyclic graphs.  An ADFD forms one or more directed acyclic graphs;
loops on the ADFD are not permitted.  This was implied but not made explicit in OOA91.  We
do so now because this rule was sometimes overlooked by new users of the method.   

No current state attribute.  In order to delineate the responsibilities of the various domains
more clearly OOA96 now limits access to the current state attribute to the architectural
domain alone.  As a result, accessor processes may no longer read or write the current state of
an instance2, and the attribute no longer appears on the Information Model.  The architecture
will maintain the correct value of the current state attribute.

This does not prevent an analyst from defining an analogous status attribute in the Information
Model should he or she so desire.  This is generally not recommended (except for assignment

1. This comment applies only to architectures that translate each action as a unit.  Transient data 
items may still need to be stored in architectures that distribute the processes of an action to dif-
ferent calling hierarchies.

2. With the exception of certain create accessors, as described in Section 9.3.

RULE (data items are attributes or current time):  All items of data appearing with an 
event and all items appearing on data flows must either represent current time or 
appear as attributes on the Object Information Model.
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status attributes for objects that participate in competitive relationships), but there is nothing
in the formalism that would prevent it.

Literals.  Where appropriate, literal values for attributes may be shown on an ADFD.  The
attribute name and value must both appear, as depicted in Figure 9.1.

Figure 9.1:  ADFD illustrating syntax for a literal value.

9.2  Multiple Data Items

The following notation is used for representing multiple data items on the ADFDs:

{ a } means a set of a's (set size unspecified but ≥ 1)

{ a }N means a set of a's.  There are N ≥1 elements in the set.

< c > means an ordered set of c's (set size unspecified, but ≥ 1)

< c >N means an ordered set of c's.  There are N ≥1 elements in the set.

Base Processes.  The bubbles that appear on an ADFD represent invocations of processes and
not the processes themselves.  Because one process can be invoked on many ADFDs, the pro-
cess is defined only oncein its process description.

Now consider the two invocations shown in Figure 9.2.  Are the processes being invoked here
the same or different processes?  OOA96 takes the perspective that the invocations are of the
same process and that, therefore, only one process description is required.  By convention, the
process description defines the “single invocation” form of the process, using input and out-
put datasets of the smallest cardinality that makes sense3.  We call this a base process because
it captures the semantics of the process in the simplest form.  

The cardinality of all inputs and outputs of the base process must be defined.  Once such a
base process has been defined, the process may be “reused” with inputs and outputs of higher
cardinality, as illustrated in Figure 9.2

3.We use the standard definition of cardinality of a set:  the number of members of the set.

RULE:  A process is to be defined in its base, or single invocation, form.

Find students
in grade

STUDENT
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. 

A process derived from a base process is considered to be the same process as the base process.

Finally, OOA defines the concept of cardinality of invocation.  The cardinality of an invocation
is the number of times the base process must be invoked to produce an equivalent result. 

Figure 9.2:  The process on the right is derived from the base process on the left.

Parameterized Base Processes.  Note that a process appearing with multiple inputs on an
ADFD is not necessarily a derived process.  Consider the process shown in Figure 9.3.  This
process cannot be derived from another with fewer inputs, since it produces a single output
regardless of the cardinality of the input dataset.  Such a process is considered to be a base pro-
cess that has been parameterized to accept an input dataset of any size.  When such a process is
shown on an ADFD, it is assumed that the process has access to the size of the input dataset;
this information is not shown as a separate input to the process.

Figure 9.3:  A parameterized base process.

Ordered datasets.  When a set of data items are input to a process, it may be necessary to keep
these items ordered in some way so we can make correspondences between them and other
data items used in subsequent processes, as in Figure 9.4.

Figure 9.4:  Example of ordered datasets.

DEFINITION (derived process):  A process is said to be derived from a base process if 
(1) it has the same name, inputs, and outputs and (2) the cardinalities of the input 
and output data sets bear the same relationship one to another as do the cardinalities 
of the corresponding datasets of the base process.
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In this example, we do not supply {Crate ID} to the Compute Volume process.  Aside from the
unaesthetic properties of such a solution, this strategy would mislead during translation and/
or impede identification of Compute Volume as a reusable process.  Hence:

Iteration and derived processes.  If multiple instances of the same data item appear as input
to a derived process, nothing is stated about where any implied iteration takes place.  The
placement of iteration is established when mapping the ADFDs to the architecture.  For exam-
ple, using the ADFD fragment shown on the right in Figure 9.2, the translation may require
iteration within the process.  In such a case, the process will be translated so that it can accept
a set of inputs and provide a set of outputs.

state 3::
. . .
volume ( N, h, w, d, v )
. . .

end state 3
function volume ( ct, ht, wt, dp, vol)

do k = 1 to ct
vol (k) := ht(k)*wt(k)*dp(k)
end do

end  

Alternatively, the translation may require that the iteration be doneperhaps across several
processesin the “state action” module for the entire action:

state 3::
. . .
do k=1 to N
v(k) = volume ( h(k), w(k), d(k) )
end do
. . .

end state 3

Finally, on an ADFD exhibiting both multiple instances and conditional output, the analyst
must annotate the ADFD to indicate the required scope of iteration.  Such an example is
shown in Figure 9.5.  When the analyst specifies a scope of iteration, the entire group of pro-
cesses within the scope will be treated as one for purposes of iteration.  As a result, datasets
appearing on dataflows internal to the scope of iteration are of size one.

NOTATION (ordered datasets):  Should a dataset need to be ordered for later correspon-
dence with other datasets, the dataset appears on the ADFD as <data item>.  To spec-
ify the cardinality of an ordered dataset, write <data item>N.  

RULE (order of input datasets):  If a derived process receives as input an ordered
dataset, all other input datasets of the same cardinality must be ordered in the same
order.

RULE (order of output datasets):  If a derived process produces as output an ordered
dataset, this dataset must be ordered in the same order as any input datasets of the
same cardinality.
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Figure 9.5:  An ADFD annotated to indicate the required scope of iteration.

Arrival of output.  If multiple instances of the same data item appear as output from a base
process, it is assumed that they arrive at any downstream process all at the same time.  How-
ever, if multiple instances of the same data item appear as output from a derived process, noth-
ing is stated at analysis time with respect to whether the data items appear as a set (all
becoming available to the downstream process at the same time) or whether they appear one
by one.  This will be established when the scope and placement of the iteration is stated:  dur-
ing the mapping of the ADFDs to the architecture.

9.3  Process Types

OOA96 allows for exactly four types of processes on an ADFD:  accessors, event generators,
transformations, and tests.  

9.3.1  Accessors

An accessor is now the only process type that can access an object data store.  The required
forms of accessors in OOA96 are shown in Table 9.1.  Note that this is the minimum set of
accessor forms that must be supported by any architectural domain.  Should a project wish to
provide additional forms (say, an existence test, or an accessor that can do a compound query),
the minimal responsibilities of the architectural domain will have to be expanded.
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<height + width + depth> N

volume

too big

small
enough

<crate ID> N

Scope of iteration
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Table 9.1:  Required Forms for Accessors in OOA96

By examination of Table 9.1, we see that the net flow of data to or from the object data store is
entirely determined by the input and the form of the process.  Hence, we have an additional
rule:

In order to support self- and non-self-creation, four forms of create accessors have been speci-
fied.  'Create' and 'create unique' are to be used for self-creation and creation of passive objects,
while 'create in' and 'create unique in' are to be used for non-self creation of active objects.
When using either of these two latter forms, the name of the state into which the instance is to
be created is included in the process name, as “create account in 'account established' state”.

Type and 
form name

Suggested 
name

Purpose of process Input data flow Output data 
flow

To/from data store 
(net flow of data)

Output con-
ditional con-
trol flow

Read

R1

read Retrieve attribute(s) of 
specified instance 

identifier attr val + . . . + 
attr val

attr val + . . . + attr 
val

Read

R2

read 
where

Retrieve attributes of 
all instances that meet 
stated criteria

attr val + . . . + attr 
val

(criteria)

{attr val + . . . + 
attr val}N

(result)

{attr val + . . . + attr 
val}N  (result)

(conditional)

no such 
instances

Read

R3

find 
where

Retrieve identifiers of 
all instances that meet 
stated criteria

attr val+attr val+ . . . 
+attr val 

(criteria)

{identifier}N {identifier}N

(conditional)

no such 
instances

Write

W1

write Write attribute(s) of 
specified instance 

identifier + attr val + 
. . . + attr val

attr val + . . . + attr 
val

Write

W2

write 
where

Write attributes of all 
instances that meet 
stated criteria

attr val + . . . + attr 
val (criteria)  +

attr val + . . . + attr 
val (result)

{attr val + . . . + attr 
val}N   (result)

(conditional)

no such 
instances

Create

C1 

create Create instance given 
identifier and, option-
ally, attribute values

identifier [+ attr val 
+ . . . + attr val]

identifier [+ attr val 
+ . . . + attr val]

Create 

C2

create 
unique

Create instance given 
only attribute value(s)

attr val + . . . + attr 
val

identifier identifier + attr val + 
. . . + attr val

Create 

C3 

create in Create instance given 
identifier, state and, 
optionally, attribute 
values

identifier [+ attr val 
+ . . . + attr val]

identifier [+ attr val 
+ . . . + attr val]

Create 

C4

create 
unique in

Create instance given 
state and attribute 
value(s)

attr val + . . . + attr 
val

identifier identifier + attr val + 
. . . + attr val

Delete

D1

delete Delete instance identifier

Delete

D2 

delete 
where

Delete instances meet-
ing stated criteria

attr val + . . . + attr 
val

instances 
deleted | no 
such 
instances

NOTATION:  The net flow of data between an accessor and its data store need not be
shown on the ADFD.  Alternatively, should a project elect to establish the convention
that this data flow be labeled, it will be necessary to verify consistency between the
data flow to/from the data store and the inputs and form of the accessor. 
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9.3.2  Event Generators

An event generator may only generate one type of event and may not access an object data
store.  An event generator may appear on an ADFD as either a base or derived process, as
shown in Figure 9.6.

Figure 9.6:  An event generator in base and derived forms.

9.3.3  Tests and Transformations

In OOA96, a test or transformation may no longer access an object data store.  In addition:

■ A transformation is allowed only to transform datasets.  This includes the traditional
computational idea behind transformations; it also allows for picking a data value out of
a set (pick the largest volume given a set of volumes, for example).

■ A test is allowed only to test relationships between its inputs.

■ The output of a derived test process is conceptually a set of conditions.  The condition
set is of the same relative cardinality as the condition set of the base process.

■ The complete output condition set from a derived test process is not shown on the
ADFD explicitly.  See Figure 9.7 for the proper representation of a derived test.

Figure 9.7:  A derived test shows the output condition set as two (or more) subsets.

9.4  Delayed Events and Timers

Timers, as prescribed in OOA91, required the analyst to combine information from the domain
under consideration with the domain of the formalism itself.  This situation has been reme-
died in OOA96, wherein the functionality previously ascribed to a timer is now associated
with a new concept:  a delayed event.  Three processes have been defined to provide the
required functionality.  These processes, which are shown in Figure 9.8, may be invoked on
any ADFD of any domain.

Generate
V1

valve ID
V1: open valve (valve ID)

Generate
V1

{valve ID}
{V1: open valve (valve ID)}

Check for
overpressure

{pressure} N

{pressure limit} N

{OK} J

{not OK} N-J
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Figure 9.8:  Timer processes in OOA96.

Canceling a delayed event causes one instance of the delayed event to be canceled.  If there are
multiple instances of the specified delayed event outstanding, the event which will be gener-
ated soonest will be canceled.  If there are no delayed events of the specified type outstanding,
nothing happens.  Similarly, reading the time until a specified delayed event is to be generated
returns the time remaining until the next instance of the specified event is to fire.  If there are
no such events waiting, a time of zero is returned.

9.5  Connecting to Other Domains

9.5.1  The Problem

Although not defined in OOA91, two types of constructs have come into use to connect one
domain to another:

■ bridging process:  a process implemented in one domain and invoked on an ADFD asso-
ciated with another domain.

■ domain-crossing event:  an event that is generated in one domain and received by an
object in another domain.

■ Move Robot is not a process in the same sense as, for example, a test or transformation:
Analysts working in the application domain cannot provide an implementable descrip-
tion for this process, since they have no knowledge of the inner workings of the PIO
domain.  

■ While the intent of the process has been captured in the process name, the requirements
on the process may not been stated completely.  In many cases, the process would more
properly be named “move robot and return event 'R2:  Robot move complete (robot ID)'
when complete.”  

■ The nature of the contract between the application and PIO domains may not have been
examined.  The extent of the robot move appears to have been given by the application
domain as displacements in x, y, and θ.  However, it could equally well have been spec-
ified as a new absolute position, and this matter should be carefully considered by the
analysts working on both domains.

Both of these schemes, as currently used, have deficien-
cies. In particular, consider the Move Robot bridging pro-
cess (from some manufacturing application ADFD) shown
to the right.  This application uses the services of a Pro-
cess InputOutput (PIO) domain for hardware control.

Generate E7 
after 10 sec

E ident

Cancel
E7

E ident

Read time
until E7

E ident time remaining

m ove
robot

d x+dy+dtheta+ robot ID
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■ The destination object is not known to the sender.  That is, the key letter here does not
have the same meaning as does the key letter of events internal to a domain.

■ The intent of the communication is captured only partially in the event name.  If a 
return communication is intended, that fact is not recorded on the model.

9.5.2  Wormholes

In OOA96, we use the wormhole symbola double-walled bubbleto indicate a transfer of
control between two domains.  The appearance of a wormhole implies specific detailed
requirements on the bridge connecting the two domains.  These requirements are made
explicit in the process description of the “wormhole process” which must include statements
of:

■ What the calling domain (server or client) expects the other domain to do (stated in the
semantic world of the caller).

■ Any return communication required by the caller.

In the general case, the analyst cannot determine whether the wormhole represents an acces-
sor, event generator, test, or transformationor, in fact, a connected set of such processes.
This will be determined during design when the wormholes are finally resolved.

Finally, note that the appearance of a wormhole on an ADFD does not prescribe whether the
communication between the domains is implemented via a synchronous or an asynchronous
mechanism.  This matter will also be determined when the wormholes are resolved and the
bridge connecting the two domains is developedgenerally shortly prior to translation.

9.6  Particular Constructs

Common processing after conditional flows.  Occasionally, after a test or other process that
makes conditional output, one wishes to indicate common processing on an ADFD.  This can
be done by merging the data (or control) flows as shown schematically in Figure 9.9.

Now let us consider a domain-crossing event as shown in
the figure to the right.  This event is generated by the appli-
cation domain and intended to be received in the alarm
domain.  This “event”, like the bridging “process”, is not
what it seems:

ge ne rate
ev en t A 1
to ala rm
do m ain

tra in ID  +  d erail lo ca tio n

A 1 :  d era ilm e nt a la rm
(train  ID , dera il lo ca tion )
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Figure 9.9:  An ADFD with a merge and the corresponding defining ADFD.

A merge is considered to be only a representational shorthand:  its meaning is defined by an
ADFD that shows the common processing replicated wherever it is to occur.  Such a “defin-
ing” ADFD cannot show any merges.

For an ADFD with a merge, it is the responsibility of the analyst to verify that only one of the
processes that produces the merged output can execute by nature of the topology of the entire
ADFD.
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