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The authors development method focuses on a systematic process using precise
specification of system components to create application—independent architectures
with a high degree of automation—achieved through large-scale code generation-and
broad applicability, focusing on real-time systems.

At the turn of the nineteenth century, the gun manufacturing industry was having difficulty
supplying product sufficient to the demand. Guns were then being built by forging parts to
relatively rough tolerances; hence armies of fitters were required to file down the parts until they
fit together snugly. Many people searched for ways to improve the situation, and they found
several solutions that each yielded incremental improvements in fitters’ performance.

Eli Whitney made an order-of-magnitude change by rejecting the assumption that increasing the
effectiveness of the fitters was the problem. He chose instead to forge the parts to much tighter
tolerances. This recast the problem from the time-consuming job of fitting to the simpler job of
assembly. Whitney did not make an incremental change; he moved the industry from
handcrafting toward automation by looking at the problem of gun manufacturing in a wholly
different way.

With our Recursive Design method, we seek to do for software development what Whitney did
for gun manufacturing. Recursive Design does not attempt to increase the effectiveness of the
programmer as we define this role today. Instead, it calls for far greater precision in the
specification of all system components and relies on automation to produce and assemble these
components into the final system.

We propose, then, not an incremental change but a wholly different alignment of the roles and
relationships between object methods, patterns, and architectures. This requires that we re-
examine some widely held assumptions.

Current View

Although practitioners within our industry hold diverse views, we believe that the following five
widely held assumptions constitute the core perspectives on object-oriented methods, patterns,
and architectures.

1. Analysis treats only the application—the subject matter of interest to the system’s end 
user, such as air traffic control, a telephone switch, an automated warehousing 
application, and the like.

2. The analysis must be couched in terms of the conceptual entities of the design. This 
assumption appears in much of the work on domain-specific software architectures,1-3 as 
well as in many object-oriented analysis and design methods.4,5  Hence a developer 
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employing an object-oriented analysis method is necessarily constrained or biased toward 
an object-oriented design.

3. Despite the lack of a universally accepted definition for architecture, most people would 
agree that an architecture provides a view of the entire system. Because this view 
emphasizes the major elements of the system, many details are necessarily omitted.

4. Patterns are generally thought of as small units, consisting of a few objects with well-
worked-out interactions.

5. Programmers expect to select, adapt, and modify patterns according to taste and 
experience. Patterns are seen as useful but advisory in nature: Use of patterns in general 
or in particular is not required.

An Alternative View

Our Recursive Design method is founded on a fundamentally different approach to this topic that
makes five very different assumptions:

1. An analysis can be performed on any domain, not just the subject matter of interest to the 
system’s end user.

2. Use of an OOA method does not imply anything about the fundamental design of a 
system.

3. Because we treat the architecture domain just like any other domain, it can be modeled in 
complete detail using an object-oriented analysis method.

4. The OOA models of the architecture provide a comprehensive set of large-scale, 
interlocking patterns.

5. Because all the code other than purchased packages is automatically generated, use of the 
patterns is absolutely required.

Of course, these assumptions depend on the definitions of several key words.

Domains and analysis. In building virtually any software system, developers must deal with
several different subject matters: the application itself as well as, typically, the user interface;
various purchased packages (such as a database or an inventory control package); and—in real-
time systems—an alarm service and the sensors and actuators that comprise the interface to the
external world. We call each such subject matter a domain.6  A domain is a separate real,
hypothetical, or abstract world inhabited by a distinct set of conceptual entities that behave
according to rules and policies characteristic of the domain. An analysis consists of work
products that identify the conceptual entities of a single domain and explain, in detail, the
relationships and interactions between these entities.

We assert that an object-oriented method is well suited to building analysis work products
because its central components represent the conceptual entities in the problem. Because our
intention is to generate all of the code for the system, we require that the OOA method employed
be a “complete detail” method. In particular

• The formalism underlying the method must specify the conceptual entities of the method 
and the relationships between these entities. This is typically done by producing a 
metamodel of the method.7,8
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• Any processing elements shown in the analysis work products must be fully defined 
within the semantics of the domain under analysis.

• The dynamic aspect of the formalism—the virtual machine that describes its operation—
must be well specified. This is required so that a set of analysis work products can 
specify all legal orders of execution of the processing elements. However, according to 

our second assumption, we can use OOA to analyze an application domain and then build 
a design that does not rely on concepts such as encapsulation, inheritance, or 
polymorphism.

Architecture. In our approach, an application-independent architecture is a separate domain that
defines rules, mechanisms, and policies that apply to all the software elements of the entire
system, regardless of the domain from which they are derived. An architecture deals with the
following topics in complete detail:

• policies and mechanisms for organizing and accessing data;
• control strategies, including synchronization, concurrency, interactions in a distributed 

system, and the like;
• structural units—the tasking strategy for the system, strategies for allocating tasks to 

processors and processing units to tasks, standard structures used within a task; and
• time—mechanisms for keeping time and for creating delayed transfers of control.

Equally important is what the architecture does not itself define: While it does provide for
allocation of elements from the application and other domains to the structural units and data
structures, it does not specify the allocation to be used. It is this property that gives rise to the
term “application-independent.” Hence, a pipes-and-filters architecture would not state the
application content of the filters, a thread-based architecture would provide mechanisms for
causing threads to be executed but would make no statement regarding the application content of
the threads, and an object-oriented architecture would employ encapsulation and inheritance over
unstated application entities.

According to our third assumption, we can use an OOA method to model any style of
architecture, whether object-oriented or not. So, in a thread-based architecture, we may see
objects such as Chore List, Chore, and Chore Input Parameter. These objects support a concept
of a thread as a list of chores to be executed, each of which takes input parameters. These objects
do not model an architecture based on classes, encapsulation, or inheritance.

Patterns. Our approach to patterns operates from our last two assumptions. According to our
fourth assumption, the OOA models of the architecture provide a comprehensive set of large-
scale, interlocking patterns, which can be rendered as archetypes. This is conceptually equivalent
to defining macros for each element of the patterns. We then extract elements from the repository
containing the application (and other domain) OOA models. Using these elements, we expand
the archetypes to generate the code for the system.

Our fifth assumption asserts that, because all the code other than purchased packages is
automatically generated, use of the patterns (archetypes) is absolutely required. If a pattern must
be modified, the change is made and all affected system components are regenerated.
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In summary, you can model an application-independent architecture using an OOA method.
From these models, you can derive and express a set of large-scale patterns in a manner that
permits completely automatic code generation.

A Systematic Process

The construction of an architecture is today an expert process. Skilled architecture builders, also
called system designers, generally work to familiarize themselves with certain kinds of
requirements imposed by the application and other domains, matching these requirements against
a mental repertoire of architectural patterns and schemes that they have seen or built before.
However, most architects cannot explain exactly what aspects of the application and other
domains they find especially important or how they come to decisions about what kind of an
architecture is required for a particular problem.

Although we do not understand this expert process in detail, we can partition it into key
activities. Such partitioning lets us identify any well-understood activities and develop
automation to carry them out, either entirely or in part, and lets us focus on each expert step to
improve our understanding of the expert component. Our process, which we call Recursive
Design, comprises seven steps:

1. Characterize the system.
2. Define conceptual entities.
3. Define theory of operation.
4. Collect instance data.
5. Populate the architecture.
6. Build archetypes.
7. Generate code.

We examine each step in turn.

Characterize the system. This step elicits those characteristics of the system that should shape
the architectural design. There are many issues you may need to consider, and we have found that
a questionnaire, as described in the “System Characterization Survey” box helps to focus the
activity and ensure that all issues are addressed. This questionnaire emphasizes fundamental
design considerations regarding size, memory usage, data access time, throughput, identification
of critical threads, response time, and the like. Although this information comes from the
application and other domains, it is stated in the semantics of system design and not in the
vocabulary of the application.

The system characterization is developed as a report, often containing numerous tables, hardware
configuration drawings, and similar exhibits. You can do this work after the analysis is complete
for all domains, or after the application domain is reasonably well understood, or even before any
analysis is done at all. Clearly, the more analysis done on each domain, the more precise the
characterization. However, when it is advantageous to produce the architecture as early as
possible, you can often complete the questionnaire surprisingly well based only on your
knowledge of related, previously developed systems.

The process of collecting and reporting characterization information helps you assimilate and
prioritize the issues and understand the interactions between them. What is not well understood is
how expert architects identify which pieces of information are significant for development of the
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architecture and which are not. In general terms, the architects work with the characterization
information to achieve Christopher Alexander’s concept of “fit”: a mutual acceptability between
context—that part of the world over which we have no control (the system characterization,
including purchased or legacy components)—and form—that part of the world over which we do
have control (the architecture). In his book, Notes on the Synthesis of Form,9  Alexander provides
a metaphor for achieving fit:

It is common practice in engineering, if we wish to make a metal face perfectly smooth and level, to fit it

against the surface of a metal block, which is level within finer limits than we are aiming at, by inking the

surface of this standard block and rubbing our metal face against the inked surface. If our metal face is not

quite level, ink marks appear on it at those points that are higher than the rest. We grind away at these high

spots.…

Hence, by the time the system characterization has been completed, you have mentally ground
away at the high spots and so developed ideas of the architecture type required.

Define conceptual entities. This step defines and describes precisely the conceptual entities of
the architecture and the relationships that must hold among them. You do this by building an
object information model.6  We use the Timepoint architecture as a running example throughout
this article. Derived from an application-independent architecture built at Lawrence Berkeley
Laboratory in 1977, the project used several key ideas, including separation of domains and a
system construction engine, that have since been incorporated into our Recursive Design method.
The original implementation was developed in assembly language and Fortran on a PDP-11/45
running RSX-11M. It has subsequently been ported to more modern operating systems and
processors throughout its 15-year production life. It has even been ported to a new accelerator
with a completely different timing structure.

Which objects appear on an OIM depend on the concepts inherent in the architecture under
construction. Hence, the Timepoint architecture has objects Kernel Task and Chore List, but not
Processor or Class—although these objects would appear in a multiprocessing, object-oriented
architecture. Timepoint’s architects selected the Kernel Task and Chore List objects based on
system characterization information and their own architectural experience. They had to make
conscious choices here: these objects are not derived directly from the application analysis. They
come about because the architect defines them. The “Origin of the Timepoint Architecture” box
explains the architects’ thinking as they defined the objects of this particular architecture.

Figure 1 shows a Shlaer-Mellor Object Information Model for the Timepoint architecture. In the
model, a box represents an object, a typical but unspecified instance abstracted from a set of
things in the domain that all have the same characteristics and conform to the same set of rules
and policies.  Each object is described by attributes; each attribute is an abstraction of a single
characteristic.  Attributes annotated with an asterisk are required to identify a specific instance of
the object.  Each line represents an abstraction of a systematic pattern of association, called a
relationship, that exists between things that were abstracted as objects.  Each relationship has a
multiplicity value, which indicates how many instances participate (one arrowhead for one
instance, two arrowheads for many instances), and a conditionality value indicating whether the
instance is required to participate (a “C” indicates that it is conditional, so it is not required to
participate).  Finally, the structure marked “is a” shows a subtype/supertype relationship, in
which the set of all instances of the supertype (Chore List) may be completely partitioned into
the subsets Unpacking Chore List, Conversion Chore List, and so on. The object and relationship
numbers and letter codes have no semantic content, save the construct Rx = Ry + Rz, which
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indicates that an instance participating in the relationship Rx is constrained to refer to the same
instance as that given by following the chain Ry and Rz.

Task ID

19.  KERNEL TASK

* Timepoint ID
Staircase level

20.  TIMEPOINT

*
●

Task ID
Timepoint ID
Timepoint to set upon
completion
Chore list ID (alt. ident)

21.  CHORE LIST

*
●

●

Chore list ID       (R101)

23.  UNPACKING CHORE LIST

*

Chore list ID
Chore number
Raw data element
Packed word ID 
Field number

29.  UNPACKING CHORE

*
●

●

●

Packed word ID   (R126)
Field number
Starting bit
Field width

17.  FIELD IN PACKED WORD

*
●

●

Data element ID R199

12.  RAW DATA ELEMENT

*

Conversion formula ID (R139)
Parameter number
Data type

33.  INPUT CONVERSION
       PARAMETER SPEC

*
●

Chore list ID       (R101)

24.  CONVERSION CHORE LIST

*

Chore list ID
Chore number
Data element ID
for output 
Conversion formula

30.  CONVERSION CHORE

*
●

●

Chore list ID
Chore number
Parameter number
Data element ID of this
parameter         

32.  CONVERSION CHORE
       INPUT PARAMETER

*

●

Table name
Column name 
Row number
Value (seen as a bit pattern)
Data element ID (alt. identifier)

4.   DATA ELEMENT

*

●

●

*

* *

*
*

Data element ID  (R199)

13.  CONVERTED DATA
       ELEMENT

*

Conversion formula ID
Formula
Output data type name

31.  CONVERSION FORMULA

*
●

●

*

Data element ID   (R199)

14.  STATIC DATA

*

       ELEMENT

Derivation formula ID
Parameter number
Data type

37.  INPUT DERIVATION
       PARAMETER SPEC

*
●

Derivation formula ID
Formula
Output data type name

35.  DERIVATION FORMULA

*

*

Chore list ID R101

25.  DERIVATION CHORE LIST

*

Chore list ID
Chore number
Data element ID
Derivation formula
Next chore number

34.  DERIVATION CHORE

*
●

●

●

Chore list ID
Chore number
Parameter number
Data element ID of this
parameter

36.  DERIVATION CHORE
       INPUT PARAMETER

*

●

*

*
*

Data element ID   (R199)

16.  DERIVED DATA ELEMENT

*

*
*

*
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C
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R101
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provides input for

R124

is comprised of

is produced from

R129=R122+R124

is source for

produces

R122

is obtained via

is component of

R131

is comprised of

is required by

R134

requires

is converted via

R140=R134+R136+R199

converts

R132
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R133

specifies
data type of
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R130=R134+R133+R139

C
specified by
acts as (an input)

is a role played by

R136

specifies input for

R139

requires for input

specifies input for

R149

requires for input

is used by

uses R143

specifies
data type of

has data type
specified by

R140=R144+R143+R149

is component of

R141

is comprised of C

C

follows R148

precedes

is required by

R144

requires

C
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(input parameter)

R146
is a role played by

is a
R199

R142
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C

●

●

Figure 1:   Shlaer-Mellor Object Information Model for the Timepoint Architecture.

Define theory of operation. This step describes precisely how the system works as a whole. We
have found that an informal but comprehensive theory-of-operation document or technical note10

works well to develop the appropriate concepts. This document should describe the threads of
control that run through the architecture domain, covering all modes in which the system
operates, such as

• normal system operation;
• cold-start and initialization procedures;
• warm-start, restart, and failover operation, as required for the delivered system; and

shutdown.

You can then render the architecture operation as a set of state models, as prescribed by the OOA
method. These models describe the dynamic operation of the architecture in complete detail.

The combination of the OIM and the state models provides a precise description of the
architecture, which ensures that all the components fit together into an integrated whole. The end
result is a set of interlocking patterns on a grand scale that, when taken together, implement the
responsibilities of the architecture in a manner consistent with the information gathered during
the system characterization step.
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Collect instance data. Every set of analysis models presupposes a particular analysis time frame
or time scope. For example, in a manufacturing application, you normally assume that the lathes,
milling machines, and the like simply exist: they are not created by the manufacturing process
being analyzed. These are called pre-existing instances.

This step simply collects the data that describes the pre-existing instances. The information will
be used by the system construction engine, developed in our process’s final step, to generate
populated data structures or initialization code as prescribed by the architecture.

The size of this step varies. An electrical power distribution or inventory control problem may
require that thousands of pieces of data be collected. For the architecture domain, typically only a
few items are needed, such as processor names, port numbers, and so on. In any case, our
standard procedure is to use commercially available database software to record the instance data,
deriving the schema for each domain from the OIM for that domain. Each such database is
known as that domain’s instance database.

Populate the architecture. This step completes the instance database for the architecture
domain. To do this, you use a “populator” program to extract elements from the repository
containing the application models, then use this information to create additional instances in the
architecture’s instance database. For example, for the Timepoint architecture, the populator
would create

• an instance of Conversion Formula for every transformation process in the application, 
and

• instance of Input Conversion Parameter Spec for every type of every input to a 
transformation in the application.

A populator is also used to transfer information from the instance databases of all other domains
to the instance database of the architecture.

At the completion of this step, the architecture’s instance database contains all the information
about the system to be built: information from the application, such as the conversion formulas,
and information specific to this particular usage of the architecture, such as the names of the
Kernel Tasks and Time Points.

Build archetypes. For clarity, we present archetype building as a two-domain problem
(application and architecture domains only), although the process is easily generalized to include
all the domains that make up a system.

An archetype combines text, written in the target programming language, with placeholders used
to represent information from the architecture’s instance database. We write one or more
archetypes—essentially macros—for each object in the architecture.

We have not yet defined a standard archetype language to be used with Recursive Design. The
current generation of tools supporting Recursive Design use different archetype languages, all of
which are similar in spirit to the description given here:

• An archetype begins with its name followed by a colon.
• Text in the target language appears inside single quotes.
• Optional expressions appear in square brackets.
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• An asterisk indicates zero or more repetitions.
• A name appearing in the definition of an archetype is either the name of another archetype 
or an attribute of the object for which the archetype is being defined.

Consider the following simple archetype for the Input Conversion Parameter Spec object of the
Timepoint architecture:

InputConversionParameterSpec:

DataType ‘P’ParameterNumber

This archetype, when expanded, generates a string representing a datatype, followed by a
parameter name of the form P1, P2, P3, and so on, for an InputConversionParameterSpec.
Both DataType and ParameterNumber are attributes of the object Input Conversion Parameter
Spec. Each expansion of the archetype causes it to substitute the values of the appropriate
attributes and produce, for example, int P1 on its first expansion, real P2 on its second, and so
on.

Archetypes may be nested in the conventional manner used for macros. For example, the
archetype for Conversion Formula is:

ConversionFormula:

OutputDataType

FunctionName`(‘

InputConversion

ParameterSpec

[ `,’ InputConversion

ParameterSpec ]* `)’ =

Formula

When this archetype is expanded for an instance of Conversion Formula, the InputConversion
ParameterSpec archetype will be expanded for all related instances of Input Conversion
Parameter Spec. The related instances are found by tracing the relationships (in this case, R139 in
Figure 1) on the architecture’s OIM.

Generate code. The purpose of this step is to develop a script—known as the system
construction engine—that will generate the code for the system from the analysis models, the
archetypes, and the instance databases of all domains. This work is generally assigned to
“toolmakers”: computer scientists with expertise in general-purpose tools such as macro
processors, databases, lex, yacc, and so on, and in extraction of information from the CASE
tool’s repository.

The central component of the system construction engine is the code generator: the component
that expands the archetypes to produce the code. For a final example, consider the archetype
shown in Figure 2 for Kernel Task. When this archetype is expanded using the architecture
instance database shown in Figure 3, we obtain the code shown in Figure 4.
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KernelTask:
KernelTask-Prolog // Includes data element definitions and other include files
KernelTask-StartTimePoint // Opening code for the task in the target language

// Expand archetype for TimePoint (which gets name of TimePoint & outputs staircase)

// Show the Conversion Chores only, for brevity

ConversionFormula* // Produces definitions for the Formulae; refers to Parameter Specs
// This produces all the Conversion Formulas in all the ChoreLists in the Kernel Task

KernelTask-SwitchtoChoreList // generates logic that tests the Timepoint to determine ChoreList

 'Switch TimePoint into { ' // Real code to produce a 'switch' statement
(  'Case ' TimePointID ':' // Now produce each case--note the parentheses
ChoreList // Note that each 'case' gets only one ChoreList, but the expansion is repeated.

// KernelTask traverses to the appropriate ChoreList, then to the Chores 
// The Chore produces the calls and, in turn, refers to the Input Parameters

 'Endcase' ) * // Repeats the contents of the parentheses--thus making each case
 ' };' // Finish the switch

KernelTask-Epilog // Set next TimePoint, if any, and release control

Figure 2:  Code archetype for Kernel Task.

To complete the system construction engine, the toolmakers prepare a script that sequences the
various system-building activities in the following order:

1. population of the architecture’s instance database
2. code generation
3. compilation
4. linking

Finally, we execute the system construction engine to generate the system code.
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Kernel Task TimePoint
Task ID TimePointID Staircase Level
Task2 Ta1 A
Task3 Ta2 B

Tb1 C
Tb2 D

ChoreList Conversion Derivation
Task ID TimePointID TP to set ChoreListID Chore List Chore List
Task2 Ta1 Ta2 CL1 Chore List ID Chore List ID
Task3 Ta2 None CL2 CL1 CL2
Task2 Tb1 Tb2 CL3 CL3 CL4
Task3 Tb2 None CL4

Conversion Chore Conversion Formula
Chore List ID Chore Number DE for O/P Conv Formula Conv Form ID Logic O/P Data Type
CL1 CN1 CDE1 CF1 CF1 p1 + p2 int
CL1 CN2 CDE2 CF1 CF2 (p1 ** 3) * PI real
CL1 CN3 CDE3 CF3 CF3 p1 - p2 * p3 real
CL3 CN1 CDE4 CF4 CF4 p1 ** 2 + 3 int
CL3 CN2 CDE5 CF2

Conversion Chore Input Parameter Input Conversion Parameter Spec
Chore List ID Chore Number Parm Num DE ID for Parm Conv Form ID Parm Num Data Type
CL1 CN1 1 DE1 CF1 1 int
CL1 CN1 2 DE2 CF1 2 int
CL1 CN2 1 DE3 CF2 1 real
CL1 CN2 2 DE4 CF3 1 real
CL1 CN3 1 DE5 CF3 2 real
CL1 CN3 2 DE6 CF3 3 int
CL1 CN3 3 DE7 CF4 1 int
CL3 CN1 1 DE8
CL3 CN2 1 DE9

Derivation Chore Derivation Formula
Chore List ID Chore Number DE for O/P Deriv Formula Deriv Form ID Logic O/P Data Type
CL2 CN1 DDE1 DF3 DF1 (p1 ** 2) / PI real
CL2 CN2 DDE2 DF2 DF2 p1 / p2 real
CL2 CN3 DDE3 DF1 DF3 p1 ** 2 int

Derivation Chore Input Parameter Input Derivation Parameter Spec
Chore List ID Chore Number Parm Num CDE ID for Parm Deriv Form ID Parm Num Data Type
CL2 CN1 1 CDE4 DF1 1 real
CL2 CN2 1 CDE2 DF2 1 int
CL2 CN2 2 CDE3 DF2 2 real
CL2 CN3 1 CDE5 DF3 1 int

Figure 3:  Instance database for the Kernel Task code archetype.
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Code Generated for Task 2 From the Instance Database

(expansion of KernelTask-Prolog) // Includes data element definitions and other include files
(expansion of KernelTask-StartTimePoint) // Opening code for the task in the target language

// Expand archetype for TimePoint (which gets name of TimePoint & outputs staircase)

int CF1( int p1, int p2) = p1 + p2 // These are the definitions for all the Conversion Formulae related to
real CF2(  real p1 ) = ( p1 ** 3 )  * PI //  the current Kernel Task through Chore List (there are several),
real CF3( real p1, real p2, int p3 ) = p1 - p2 * p3 // to the Conversion Chore List, to many  Conversion Chores to a
int CF4(  int p1 ) = p1 ** 2  + 3 // smaller number of Conversion Formulae

Switch TimePoint into { // Just code
Case Ta1: // The first case statement

CDE1 = CF1( int DE1, int DE2 ) // All the chores in the Chore List
CDE2 = CF1( int DE3, int DE4 )
CDE3 = CF3( real DE5, real DE6, int DE7 )

Case Tb2: // The second case statement
CDE4 = CF4( int DE8 ) // All the chores in the second Chore List
CDE5 = CF2( real DE9 )

Endcase };

(expansion of KernelTask-Epilog) // Set next TimePoint, if any, and release control

Code Generated for Task 3 From the Instance Database

(expansion of KernelTask-Prolog) // Includes data element definitions and other include files
(expansion of KernelTask-StartTimePoint) // Opening code for the task in the target language

// Expand archetype for TimePoint (which gets name of TimePoint & outputs staircase)

real DF1(  real p1 ) = ( p1 ** 2 )  / PI // These are the definitions for all the Derivation Formulae related to
real DF2( int p1, real p2 ) = p1 / p2 //  the current Kernel Task through Chore List (there are several),
int DF3(  int p1 ) = p1 ** 2 // to the Derivation Chore List, to many  Derivation Chores to a

// smaller number of Derivation Formulae

Switch TimePoint into {
Case Tb1: // The first case statement

DDE1 = DF3( real DE5 ) // All the chores in the Chore List
DDE2 = DF2( int DDE2, real DDE3 )
DDE3 = DF1( real DDE5 )

Case Tb2: // The second case statement
// There are no chores in Chore List 4

Endcase };

(expansion of KernelTask-Epilog) // Set next TimePoint, if any, and release control

Figure 4:  Code generated for Tasks 2 and 3 from the instance database shown in Figure 3.

Implications

We have proposed that developers construct an architecture-independent application analysis
expressed in complete detail in an OOA method, an application-independent architecture also
expressed in complete detail in both conceptual and archetype terms, and a system-construction
engine that lets us generate and regenerate the system at will.
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New approaches. Recursive Design lets us approach a software development strategy in totally
new ways.

• We can now build architectures without knowing anything about the semantics of the 
application. This enables production of commercially available architectures. Hence a 
project may soon approach the architecture problem as a build-or-buy decision—with 
potentially highly favorable economic and schedule consequences.

• Companies that build many products of a similar type—say intelligent laboratory 
instruments or medical electronics—often find that a single architecture (with possible 
minor variations) can support a whole range of products and applications that share the 
same characteristics. The use of an application-independent architecture lets the 
organization amortize the architecture investment across multiple projects by reusing the 
entire domain, not merely a set of classes.

• Other organizations concentrate on a product line that spans a wide range of performance 
and platform requirements. Here, a single set of application analysis models can be used 
to build multiple implementations using different architectures.

• A starter architecture supports the early delivery of application prototypes. Although the 
starter architecture may be lacking in response time, multiprocessor support, or the 
application size it can support, it is sufficient to generate and demonstrate the application 
as soon as each portion of the analysis is complete. Development of an architecture that 
meets performance needs can then proceed concurrently.

• The nature of long-term maintenance is entirely changed. Because this approach delivers 
application and architecture models, together with a construction engine, we do not 
maintain the production code. Instead, when the requirements change, we adjust the 

models and reconstruct the system. Consequently, maintenance is never carried out on the 
production code, but only on the models and archetypes that generate the code. To modify 
the production code would be akin to modifying the code generated by a  compiler.

Focused developer roles. Recursive Design shifts the traditional skill profiles required on a
software development project. The roles developers must play are now easily identified with the
method’s steps.

• Analysts are particularly important on any project that takes the approach presented here. 
Because all the application code will be generated directly from the analysis models, 
these models must be correct and complete.

• Architects take responsibility for the system design concept and the analysis models for 
the architecture. Because the architecture must appear as if it were produced by a single 
mind, it is best to staff an architecture team with at most three or four experienced 

architects.
• Programmers develop the archetypes. Far fewer programmers per se are required on a 

project using Recursive Design than on one using conventional methods, since no 
application code is written by hand.

• Toolmakers are needed on every project. However, in a Recursive Design project, the 
need is well identified, and the resources needed can therefore be more easily predicted.
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Finally, this shift in skill profiles parallels the shift that occurred when Whitney recast gun
manufacturing from a low-tolerance fitting problem to a high-tolerance assembly problem.
Although a higher skill level was required to build the factory itself, machines then took over the
rote work of production.

The systematic process we have outlined contains only one truly expert problem: getting from
the system characterization to the architecture’s conceptual entities. We see two opportunities for
making inroads in this area in the near term.

First, we can expand the characterization step. Although a great deal of information is collected
during system characterization, we are by no means confident we are collecting the right
information. In particular, experience indicates that a better quantitative understanding of the
control threads is significant in making numerous architectural decisions. Hence, we are now
looking into models and automation that would provide a practical way to collect this
information.

Second, we can build a collection of sample architectures. We believe that such a collection
would provide an expanded repertoire of designs for consideration by system architects. Each
architecture could be more closely linked to the characterization work by providing quantitative
information showing the range of applicability as it is understood today.

Eventually, a comprehensive catalog of this nature could put system architects in a position
similar to that enjoyed by electronics engineers. They would have a book that defines all the
chips you may purchase, together with their performance characteristics, such as speed, heat
dissipation, and so on. We would have a book of application-independent software architectures,
together with their performance characteristics on a range of platforms. This would truly produce
an order-of-magnitude change in the way we develop software.
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SYSTEM CHARACTERIZATION SURVEY

1. Domains
The purpose of this section is to understand the technical content of the system.
• How many domains are there in the system?
• Of these domains, how many domains are already built and need no change? How many 

will need some work either to build a clean interface or to change to the content of the 
domain?

• How many domains are yet to be built? For each domain to be built: How many active 
objects, passive objects, and assigner objects do you expect? How many instances of the 
active and passive objects do you expect for each domain?

2. Application
The purpose of this section is to characterize the system that the architecture will execute so as to
make tradeoffs between the size and execution speed in the architecture.

2.1  Application type
• Which (one or more) of these terms best describes the system: batch-oriented; data 

acquisition; process control; event/control-driven; thread-based; database manipulation; 
other?

• Is this system independent of existing software or integrated with it?
• Are there any industry or internal standards that this system must comply with?
• What are the requirements for failover or error recovery? How fault tolerant will the 
system need to be?
• Will the application be required to run continuously for long periods of time? Are online 

code updates required?

2.2  Processing requirements
• Will the system to be I/O or CPU-bound? Why?
• How much dynamic instance creation is required?
• What is the execution profile of the system? Is it periodic or event driven?
• If the system is periodic, what are the required sampling frequencies?
• If the system is event-driven, what are the burst and average rates for event generation?
 • Can the event stream be throttled? Can any events be thrown away? Are there hard 

deadlines for processing events?
• Must resources be allocated “fairly”? Is it acceptable to starve any component?
• Will the architecture have to execute within specific time periods, such as rate monotonic 

scheduling, or quantum scheduling? Another scheduling algorithm?
• Is priority-based preemption required? What is the priority associated with? Instances? 

Event types? What is the longest time an action can execute without any interruption?
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2.3  Memory usage
• Will memory be a limited resource?
• How much data will the system need to store and process?
• What is the lifetime of the data?
• Does data persist between system invocations? Is there a requirement to archive runtime 

data?
• What kind of offline access is required to persistent data? Is it used only for 

initialization? Does the data have any structure? Are ad hoc queries needed?

2.4  Interface to the outside world
• Is there a user interface? How is it specified?
• Will the system be implemented using different platforms? How will platforms 

communicate? Shared memory? LAN? WAN?
• Is there a process input/output (PIO) domain on your domain chart?

3. Software environment
These questions help understand the environment for the architecture. The capabilities of the
environment may enable more efficient or easily translated architectures.

• What operating system(s) will be used?
• What languages (and compiler versions) will be used?
• What networking protocols will be used?
• What databases will be used?
• What third-party software will be used?

4. Hardware environment
These questions characterize the hardware environment and help determine of performance levels
and distribution capability.

• Is the CPU dedicated or will other tasks also be executing on the CPU?
• Is there a requirement for concurrent processing? Will the system operate on one or 

several CPUs? What forms of interprocessor communication are available?
• Will there be specialized hardware (DSPs, custom processors)? How will this hardware 

be  used? What are the data rates to and from the hardware? What is the mechanism? 
DMA? Interrupts?

This survey is excerpted from “Architecture Characterization Questionnaire,” a Project Technology internal

report by Gregory Rochford, John Wolfe, Kent Mingus, Michael Lee, and Stephen J. Mellor.
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ORIGIN OF THE TIMEPOINT ARCHITECTURE

The Timepoint architecture example used throughout this article was modeled on the control
software for a therapy machine used to irradiate certain kinds of tumors. The machine consists of
a computer control system together with a particle accelerator that provides a beam of energized
particles. The computer system controls and monitors the beam once it has left the accelerator
proper.

As a result of the system characterization work, the architects identified four issues that were key
to determining the architecture:

• External sensors and actuators are interfaced to a small outboard processor connected via 
a DMA channel to the central computer.

• The operating system used on the central computer limits each task to a small address 
space.

• The accelerator provides a pulsed beam, with a hardware signal supplied before and after 
each pulse. These two signals initiate all real-time data acquisition and computation.

• The facility provides a large and ever-increasing inventory of equipment to measure and 
control irradiations. Only a subset of this equipment is used for any particular irradiation, 
the selection being dependent on the shape of the volume to be irradiated, the energy of 
the beam, and similar factors. This is evidenced in the application analysis models, which 
show a very large number of short control threads, only a few of which are to be activated 
during any particular irradiation.

From the two hardware-provided signals—Ta and Tb in Figure A—the architects abstracted the
concept of a timepoint. Whenever a timepoint occurs, a Kernel Task runs, and—upon
completion—sets another timepoint. The newly set timepoint can, in turn, cause another kernel
task to run.

Ta

time

Tb Tb2 Tb3
. ..

Ta Ta2 Ta3
. ..

TaN

Tb Ta Tb

Figure A:  System sketch from which architects generated the timepoint concept.
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The real-time computation is divided across several kernel tasks to meet the address space
restriction. Each kernel task has a specific purpose:

• acquisition of raw data from the outboard processor;
• unpacking raw data where required and converting it to engineering unit data items;
• computation of derived values, many of which are used to verify the stability of the beam 

and associated equipment;
• checking of data items to see that they fall in the required range; and
• running diagnostics to ensure the integrity of the computer system itself.

With regard to data item checking, any deviation of a data value causes the irradiation to
terminate. Data checking accomplishes normal termination of an irradiation (measured dose _
required dose) as well as ensuring that the control and monitoring equipment is operating
properly and that the beam is maintaining prescribed characteristics.

To deal with the ever-changing configuration of measuring and control equipment, the architects
abstracted the idea of a chore list. Chores in this definition are small operations performed by a
specific kernel task when initiated by a specific timepoint. For any particular irradiation,
developers prepare two sets of chore lists. One set is executed at the end of the pulse to compute
dose and beam-related quantities, while the other is executed before the pulse to collect
background (electrical noise) measurements used to correct the dose calculation. The chore lists
are prepared offline by assembling snippets of the pertinent control threads from the application
analysis models.
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