
The Shlaer-Mellor Method

Sally Shlaer
Stephen J. Mellor

Project Technology, Inc.
10940 Bigge Street

San Leandro, California 94577-1123
(510) 567-0255

http://www.projtech.com

1. Introduction

Background. The Shlaer-Mellor Method is a well-defined [1, 2, 3] and disciplined approach to
the development of industrial-grade software. It is based on the object-oriented paradigm, and
has developed over the past dozen years in the pragmatic environment of real-world projects.
These projects have included manufacturing and process control applications, intelligent
instruments and peripherals, banking operations, telecommunications, and defense applications.

Characteristics. The hallmark characteristics of the Shlaer-Mellor Method are an integrated set
of models that can be executed for verification, and an innovative approach to design that
produces a system design through a translation of the analysis models. This approach leverages
the initial investment in a formal analysis phase; it provides smooth and predictable transitions
between analysis, design, and implementation; and it enhances the reuse characteristics of the
system by segregating application and implementation issues.

Framework. The framework for applying the Shlaer-Mellor Method is an initial identification
of separate and independent subject matters, called domains. Domains can be further partitioned
into subsystems to provide coherent and manageable pieces of work. The method prescribes
explicit mechanisms for dealing with this layered partitioning of the system. This framework
allows the Shlaer-Mellor Method to:

• scale successfully to address both large- and small-sized projects,
• provide structure for project planning,
• be the basis for large-scale reuse of domain-level components.

Process. The general process of applying the Shlaer-Mellor Method is as follows:

• Partition the system into domains.
• Analyze each domain.
• Verify the analysis through execution.
• Specify the translation of the analysis models.
• Build the translation components.
• Translate the models of each domain.

While there is a natural order to these steps, based on inherent dependencies, there is typically
significant overlap in the work being done on them. Some iteration also occurs between the
steps, though the Shlaer-Mellor Method is careful to limit the scope of iterations in the interest of
efficiency. This process most closely resembles a transform-based lifecycle, as described in [4].

 Copyright 1996 by Project Technology, Inc. - 1 -
All rights reserved.

The process can also be modified to accommodate project-specific needs for variations such as
prototyping and incremental development, though these are not essential elements of the Shlaer-
Mellor Method.

2. Process Steps

The Shlaer-Mellor Method provides comprehensive coverage for the analysis, design, and
implementation phases of the software development lifecycle. This section briefly describes each
of the major steps in the Shlaer-Mellor Method and its contribution to the development lifecycle.
It characterizes the activities in each step and introduces the fundamental concepts on which the
activities are based.

In order to describe the Shlaer-Mellor process in detail, the process is broken down into the steps
listed below. These steps distinguish between the work according to different types of domains,
namely, the application domain, the service domains, and the architectural (translation) domain.
These types of domains are described in the next section.

1. Partition the system into domains.
2. Analyze the application domain.
3. Confirm the analysis through static verification and dynamic verification (simulation).
4. Extract the requirements for the service domains.
5. Analyze the service domains.
6. Specify the components of the architectural domain.
7. Build the architectural components.
8. Translate the models of each domain using the architectural components.

2.1 Partition into Domains

The system to be built is first divided into distinct, independent subject matters, or domains.
There are four types of domain that we distinguish for the purpose of explaining the method.
They are:

• an application domain, that is the subject matter of concern to the end user of the system,
• several more-general domains, called service domains, such as a user interface or a

sensors-and-actuators domain,
• an architectural domain, that is the organization of data, control and algorithm within the

system as a whole
• and some implementation domains, such as operating system and programming

language.

The domains are organized in client-server relationships, so that a domain acting as client can
rely on a server domain to provide commonly-needed mechanisms and services.

The results of this initial step are depicted in a Domain Chart as shown in Figure 1. The ovals
represent domains, and the thick arrows represent client-server relationships with the arrow
pointing to the server. These relationships are called bridges. The domain chart is supported by
textual descriptions for each domain and each bridge.

 Copyright 1996 by Project Technology, Inc. - 2 -
All rights reserved.

User Interface Alarm Service

PIO

Software Architecture

C++

Juice Manufacturing Plant

Unix

the purpose of the
system from the
end-users perspective

more general
domains

architectural domain

implementation domain

Figure 1: Sample Domain Chart

The domain chart is the first level of partitioning on the system as a whole, because each domain
is a separate subject matter that can be analyzed separately from others. However, a domain may
be too large to be analyzed as a unit by a team of analysts. In this case, it is necessary to
partition a domain into subsystems. Each subsystem must be small enough to be analyzed
effectively by a small team of analysts. There is a set of models that show relationships between
subsystems within a single domain. The models in this set are the Subsystem Relationship
Model, the Subsystem Communication Model and the Subsystem Access Model. These models
show the data relationships, event communications and data accesses between subsystems
respectively.

There is a separate management structure, the Project Matrix, which is used to track work, to
track progress, and to provide a structure for naming the elements produced by the project team.
The Project Matrix, and its uses, are described in [7]. We do not describe it here because it is not
a part of the method itself, but rather the structure for managing the project using the method.

2.2 Analyze Application Domain

The next step is to analyze the application domain using Shlaer-Mellor OOA [1, 2]. Shlaer-
Mellor OOA models are made up of three separate, but integrated, parts:

• First, we build an Object Information Model that defines the objects (conceptual entities)
of the domain and the relationships between the objects.

• Second, we build State Models that prescribe the lifecycles (behavior) of each object.
We generally build one state model for each object on the Object Information Model.
We do not build state models for objects that have no dynamics, and we may build an
additional state model for objects that manage contention.

• The third model is the Action Specification that factors and formalizes the processing
required in the State Models. There is one action specification for each state of each
object's lifecycle. Action specification can be done in either Action Data Flow Diagrams
or a well designed action language.

This produces a set of formal models shown in Figure 2.

 Copyright 1996 by Project Technology, Inc. - 3 -
All rights reserved.

Figure 2: Structure of the primary models of Object-Oriented Analysis

The models of OOA are based on formal structures with strict rules. The Object Information
Model is based on the relational model of data, augmented so that the selected abstractions also
account for behavior. The State Models are deterministic finite state automata of the Moore
variety [9]. The Action Specification shows sequence and conditionality, and each process can
be defined in a formal language. The strict rules for these structures force certain decisions, such
as placement of data, placement of responsibilities, and placement of functions. These forced
decisions tend to reduce choices that the analyst can make, freeing the analyst to focus on the
abstractions required in the domain. These decisions also help make models made by different
analysts comparable: there is the concept of a 'right' way to build the models. This reduces
unnecessary discussion about issues of taste. The strict rules also tend to expose certain types of
issues very early in the analysis process, including, for example, what data is required to support
the abstraction, how abstractions interact dynamically and so on. There is no way for the analyst
to avoid facing fundamental issues about how things work in a domain.

The rules and formality permit the models to be mathematically transformed into other forms.
For example, the relational structure of the data definition can be transformed into a linked list, a
tree, a set of list based on equivalence classes, or we could even not store the data at all, instead
computing the values as required at run time. Similarly, the state models can be joined together,
split apart, and repackaged in a variety of ways. It is entirely possible to implement the state
models in completely different ways: a set of coroutines, one for each action; as a block of code
with break points; or as linear code modules that follow a thread of control. Partitioning rules on
the construction of the processes in an action specification allow accessor processes to be
implemented as encapsulating functions of a class, as SQL operations in a database, or as simple
data accesses. Some processes may even have no physical manifestation at all because of the
choice of data structure. All of these issues are, however, design and implementation issues, and
they should not be considered at analysis time. The analysis formalism requires only that the
analyst say what data is required, when something is to be done, and what exactly must be done.
The designer will decide how to represent this in the most efficient manner.

 Copyright 1996 by Project Technology, Inc. - 4 -
All rights reserved.

The process of building the OOA models is similarly proscribed. The analyst proceeds first to
define the objects on the Object Information Model, then to describe their behavior over time,
and finally to define the processing. Figure 2, above, indicates that the work must be done in this
order because the decision about which action specifications to build is determined by the states
in the state models, and which state models to build is determined by the objects on the object
information model. In practice, project teams discover that relatively little iteration is required
between the three models, once a certain level of experience is reached.

In addition to the three fundamental models, there are also a number of derived models, as shown
in the table below. The first group of derived models exists at the subsystem level, and act as an
overview of the various relationships between subsystems. The second group of derived models
exist for each subsystem.

Model Name Purpose
Subsystem Relationship
Model

Shows the relationships between objects in different
subsystems.

Subsystem Communication
Model

Shows the asynchronous event communications between
objects in different subsystems.

Subsystem Access Model Shows the synchronous data accesses between objects in
different subsystems. The accesses are derived from the action
specifications.

Object Communication Model Shows the asynchronous event communications between
objects. Objects that have state models, and events between
those state models, are shown.

Object Access Model Shows the synchronous data accesses between objects. The
accesses are derived from the action specifications.

All these models can be built using CASE tools1, and need not be built by the analyst directly.
However, it is often helpful to build these models early in the analysis process to guide the work.
This is especially true for the Object Communication Model, because this model shows the
communication between objects. It is helpful to build the Object Communication Model to
visualize that objects send events to that other objects. Once the fundamental models are built,
the derived models can be rederived from the fundamental models, guaranteeing consistency
between them.

1For example, BridgePoint Model Builder can derive all of these models.

 Copyright 1996 by Project Technology, Inc. - 5 -
All rights reserved.

2.3 Confirm the Analysis

Because of the integrated, complete, and formal nature of the Shlaer-Mellor OOA models, it is
possible to confirm the specified behavior of the system both statically and dynamically.

The three models form a single, integrated unit that, when taken together, define precisely the
data, behavior and processing required in the domain. There is a set of rules, described in [8],
for the syntax of the models that define consistency of an OOA model set, and these rules form
the basis for a static verification. Each one of the rules can be checked, and the elements that
appear in several models can be cross-checked against one another. There are two basic
approaches to such checking: One approach is to allow the user to enter a set of models into a
CASE tool, and then check each rule later. The alternative and preferred technique is for a
CASE tool to take the approach of allowing the analyst to enter only legal models. The second
technique dramatically improves analysts' productivity.

The formalism for the models is sufficiently well defined that the models can be executed. In
this execution, the data that is processed is defined in the Object Information Model, the
sequence in which the processing takes place is specified in the State Models, and the processing
is specified by the Action Specification. The execution of the models can be simulated using the
following process:

1. Establish the desired initial state of the system in data values in the Object
Information Model.

2. Initiate the desired behavior with an event sent to a State Model.
3. Execute the processing as specified by the Action Specification and as sequenced

by the State Models.
4. Evaluate the outcome against the expected results.

When the processing in the Action Specification is specified in an executable manner, the
execution process can be automated. Note that this approach answers the age-old question of
when analysis is complete: a Shlaer-Mellor OOA is complete when it executes properly, that is,
exhibits the required behavior.

2.4 Extract Requirements for Service Domains

During the analysis of a domain, we abstract away and ignore certain issues, such as how we
present information to an operator, or how we intend to store data. We assume that these
facilities will be provided by other domains. Each bridge between domains represents the set of
assumptions made by the client domain on a particular server domain. These assumptions are
then viewed as requirements by the server domains, as illustrated in Figure 3. In this example,
the application domain assumes that mechanisms will be provided for storing persistent data, for
transport of events, and for communicating with an operator. These requirements are assigned to
the various service domains in the system. These become the basis for proceeding with analysis
on the remaining domains.

 Copyright 1996 by Project Technology, Inc. - 6 -
All rights reserved.

User Interface Alarm Service

PIO

Software Architecture

C++

Juice Manufacturing Plant

Unix

there is a way
to communicate
with an operator

there is a way to
store data and
send events

someone manages
trouble messages

sensor-based
attributes have
current values

Figure 3: Requirements generated by the application domain.

In addition to these qualitative requirements, we may also specify quantitative requirements. For
example, we assume that we have a mechanism for storing up to two thousand object instances,
drawn from two dozen classes. We expect to create and delete instances in the application
domain quite slowly, perhaps one instance of each of twelve classes in response to an operator
request. We expect the operator to be one initiator of external events; the longest thread is twelve
objects long. We require a response in less than one quarter of a second. We require that we
know the precise status of physical entities in the application every second. Consequently, the
position of various entities in the physical plant is read each half second, and the corresponding
icons are updated on the screens. We require an iconic interface, with a maximum of 100 icons
visible at any time, etc.

These qualitative and quantitative requirements feed the analysis of the service domains.

2.5 Analyze Service Domains

Given the qualitative and quantitative requirements from all the client domains, we can proceed
to analyze each of the remaining domains separately using Shlaer-Mellor OOA. The
requirements will shape the abstractions that we choose for the server domain. The fact that the
client domain requires an iconic interface, for example, will cause the analysts of the user
interface domain to choose conceptual entities such as icon, and to choose to distinguish between
updateable icons and unupdateable icons for the sake of efficiency. The unupdateable icons are
thought of differently from updateable icons in order to meet the performance constraint. As the
analysis of each domain is completed, its behavior is verified through an execution of the OOA
models.

The order of the work is imposed by the client-server relationships: one must not begin analysis
of a server (lower) domain until sufficient analysis has been done of its clients to ensure that all
requirements on the server have been identified. Because of the form of the qualitative and
quantitative requirements as described above, it is frequently the case that work can begin on
analyzing server domains very early in the process. In fact, in organizations that tackle similar

 Copyright 1996 by Project Technology, Inc. - 7 -
All rights reserved.

systems repeatedly, work often begins on all domains concurrently. However, beginning the
analysis of a server domain too early in the project will increase risk. When the quantitative
requirements are particularly stringent, it is sometimes advisable to delay starting work on a
server domain until all the requirements imposed by the client domain are well understood.

This process continues downwards until we reach domains that are implemented and already
provide the required capabilities. These typically include such domains as operating system,
programming language and communication network.

2.6 Specify the Architectural Domain

The final domain to be treated is the architectural domain. The subject matter of this domain is
system design, and it

• specifies generic mechanisms and structures for managing data, function and
control for the system as a whole and

• defines the translation of the OOA models into these mechanisms and structures.

Issues that must be addressed by the architecture domain include: available combinations of
languages, operating systems, and platforms; performance requirements for data access and event
transmission; multitasking and synchronization requirements; distribution across platforms; type
and degree of flexibility desired; and an appropriate translation of the OOA models.

A defining feature of the Shlaer-Mellor Method is that the statement of the architecture is
application-independent. Instead of elaborating the analysis models, adding in design
information and reorganizing the analysis, we make a statement of the mechanisms and structures
required to support the OOA formalism. The architecture must therefore provide ways to store
data, ways to transmit events, ways to access data, and the like. Of course, the approach taken
must be efficient for the type of application involved.

The primary purpose of specifying a system-wide set of mechanisms and structures is to impose
uniformity on the construction of the software. This is accomplished by stating policies covering
such things as: how data is organized and accessed, how threads of control are managed, and how
application and service code is to be constructed for the entire system. This uniformity reduces
the complexity of the resultant system by providing standard mechanisms and structures for
accomplishing widely-needed functions.

The architectural domain can be specified in OOA. The conceptual entities (objects) in this
domain are defined to support the type of design desired: In a fast process control system, the
conceptual entities will include periodic tasks and a universally accessible run-time database,
whereas an object-oriented design (OOD) will be based on object-oriented concepts and include
entities such as container classes and classes that implement mechanisms such as finite state
machines, object communication, and timers.

 Copyright 1996 by Project Technology, Inc. - 8 -
All rights reserved.

Inheritance Diagram Dependency Diagram

Class Structure Chart

Class Diagram

Figure 4: Object-Oriented Design Diagrams

Object-Oriented Designs. For object-oriented designs we use a notation supporting OOD
constructs [5]. Four distinct diagrams are used in this notation for depicting the design of an
object-oriented program, library, or environment, as shown in Figure 4. In this figure, there is:

• a Class Diagram, which shows the external view of a single class,
• An Inheritance Diagram, which shows the inheritance relationships between

classes,
• a Dependency Diagram, which depicts the invocation and 'friend' relationships

that hold between classes,
• and a Class Structure Chart, which shows the internal structure of the code of

the operations of a class.

2.7 Build Architectural Components

The architectural domain is specified in two types of components: mechanisms and structures.
Mechanisms represent architecture-specific capabilities that must be provided to realize the
system. Examples of architectural mechanisms in an object-oriented design include classes to
implement such things as the finite state machines, object communication events and the timers

 Copyright 1996 by Project Technology, Inc. - 9 -
All rights reserved.

of OOA. Mechanisms are built in a traditional manner by designing and implementing code.
This code takes the form of tasks and class libraries.

Structures represent a prescription for translating the OOA models of the client domains. An
example of an architectural structure is to prescribe that all client analysis objects are realized as
classes that inherit the ability to traverse their state models from an architectural class. Structures
are built as a combination of code and data that needs to be completed by adding elements from
the client domains such as variable declarations, operation declarations and operation code.
These built structures are called archetypes. Adding elements from the client domains, or
"populating the archetypes" as it is called, takes place prior to source code compilation. With
proper CASE support and relatively straightforward tools, much of this work--up to 100%--can
be automated using the OOA models as the source for client domain elements.

In summary, two different types of architectural components are built to realize the specifications
for the architectural domain. Mechanisms are realized as traditional software tasks and library
components. Structures are realized as archetypes containing code and data that need to be
populated with elements from the client domains. Archetypes are highly reusable and their
construction offers many opportunities for automation.

2.8 Translate the OOA Models

The details of the activities for this step are very dependent on the exact nature of the chosen
design and the resulting architectural components. What can be described for this step are the
general nature of the activities and the associated support that the Shlaer-Mellor Method
provides. In the most general case of multitasking and multiprocessor systems, the basic
activities are to:

• allocate instances of objects to tasks, and tasks to processors, and
• create each task by a translation of the OOA models.

The allocation of objects to tasks takes into account such issues as the communication between
objects (shown in the Object Communication Model of the OOA [2]), the inherent concurrency
of the problem (shown in the Thread of Control diagrams of the OOA [2]) and the ability of the
operating system to simulate concurrency. The allocation of tasks to processors takes into
account such issues as the communication between tasks, the inherent concurrency of the
problem, and the capabilities of the inter-processor communication mechanism. The results of
these allocations are shown in the Task Communication diagram [6].

The second major activity of this step is to create the tasks identified by the above allocations. In
a strong architecture, the archetypes prescribe virtually the entire design of these tasks. This
design is realized by populating the replaceable segments of the archetypes with elements from
the OOA models. This design activity may be carried out by a combination of automation and
orderly manual procedures as previously described. The final step in creating the tasks is to write
the code for the algorithms specified in the Action Specification. Note that the granularity of
code being built at this step is class and instance operations. To illustrate this approach, an
example of a partial code archetype and the populated result are shown in Figure 5 for a
particular object-oriented architecture.

 Copyright 1996 by Project Technology, Inc. - 10 -
All rights reserved.

Archetype

// Angle brackets indicate a name to be replaced by the archetype processor,
// which may be a programmer, an editor, a special purpose program linked
// to a CASE tool, or a preprocessor.
//
// <active class name> is the name of the class being defined.
// <active class type> is the type of the class being defined.
//
// Subscripted variables indicate the ith element as follows:
//
// attri = the ith declared attribute of the source object
// attri type = the type of the ith attribute
// eventi = an event number handled by the class
// dataseti = event data for the ith event

// dataseti attrj = jth attribute of the ith dataset Populated Result
//
// Declare the class // Declare the class
class <active class name> : public active instance class account: public active_instance
{ {
// Declare the instance components // Declare the instance components
private: private:

<attr1 type> <attr1>; int account_ID;
<attr2 type> <attr2>; money balance;

. . . customer customer_ID;
public: public:
// First the class operations // First the class operations
// <active class type> Institute(<attr1 type>, . . .) is written as: // <active class type> Institute(<attr1
type>, . . .) is written as:

<active class name> (<attr1 type>, <attr2 type>, . . .); account (int, money, customer);
static void Load_FSM(); static void Load_FSM();

// Now the class event takers // Now the class event takers
static void Create_Event_<event1>(<dataset1 attr1 type>,<dataset2 attr2 type>, . . .); static void Create_Event_Init(

customer, money);
static void Create_Event_<event2>(<dataset2 attr1 type>,<dataset2 attr2 type>, . . .);
. . .

// Now the instance operations, event takers first // Now the instance operations, event takers first
void Take_Event_<eventn+1>(<datasetn+1 attr1 type>,<datasetn+1 attr2 type>, . . .); void Take_Event_Debit(money);
void Take_Event_<eventn+2>(<datasetn+2 attr1 type>,<datasetn+2 attr2 type>, . . .); void Take_Event_Deposit(money);
.

// Now the read accessors // Now the read accessors
<attr1 type> Read_<attr1>(); money Read-balance();
<attr2 type> Read_<attr2>(); customer Read_customer_ID();
.

}; };

Figure 5: Archetype and Populated Result

In this example, the archetype prescribes the translation of an OOA object into a C++ class. The
replaceable segments in the archetype, as indicated by the angle brackets, have been replaced
with elements from the OOA models. In this case, a banking example, the OOA contained an
object Account with attributes Account ID, Balance, and Customer ID, which
responded to events Init, Debit, and Deposit, and allowed read access, via encapsulated
functions, to its Balance and Customer ID attributes. The archetype also prescribes a
mechanism for loading the account state model, void Load_FSM(). Another archetype would
be specified in this architecture to define the structure and content of the main module for the
task in which this object would reside. This particular architecture is described in more detail in
reference [2].

2.9 Benefits of Shlaer-Mellor Method

 Copyright 1996 by Project Technology, Inc. - 11 -
All rights reserved.

Verification. The ability to simulate the execution of the Shlaer-Mellor OOA models clearly
establishes the completion criteria for analysis and allows the functional behavior of the system
to be verified early, at analysis time.

Integrated Approach. The Shlaer-Mellor Method provides extensive lifecycle coverage with
smooth transitions between the analysis, design, and implementation phases using Recursive
Design.

Iteration. This approach reduces and controls iteration in analysis by confining it to a single
domain at a time. Iteration in design is similarly controlled: Modifications to the design are
made entirely in the architectural domain and propagated to the entire system through the
archetypes.

Reuse. The approach systematizes and supports reuse of entire domains. Because domains are
kept completely separate from one another until the final construction steps, they can be
transported intact to other systems. This applies particularly to the architectural domain: This
domain, including the mechanisms and archetypes, is commonly reused for other systems that
have basically the same loading and performance characteristics. Mappings unite the domains
into a system at the end of the development lifecycle.

Automation. Because the process is based on translation of analysis models, it is highly
susceptible to automation. The most recent generation of CASE tools have created the capability
for 100% code generation.

3. Deliverables

The major deliverables for the Shlaer-Mellor Method are listed below by development phase. A
more detailed listing and explanation of these deliverables is available in reference [2].

Analysis Phase Design Phase

System Level: System Level
• Domain Chart • Task Communication Diagram
• Project matrix Task Level

Domain Level: • Inheritance Diagram
• Subsystem Relationship Model • Dependency Diagram
• Subsystem Communication Model • Task Archetypes
• Subsystem Access Model Class Level

Subsystem Level: • Class Diagram
• Object Information Model • Class Structure Chart
• Object Communication Model • Class Archetypes
• Object Access Model

Object Level: Implementation Phase
• Object State Model • Populated Task Archetypes
• State Action Specification • Populated Module Archetypes

 Copyright 1996 by Project Technology, Inc. - 12 -
All rights reserved.

4. Pragmatics

The Shlaer-Mellor Method is available to the public in the form of books, published articles,
training courses and consulting, all supplied by Project Technology, Inc. of Berkeley, CA. The
books and some of the articles have already been referenced in this description of the method. A
variety of training courses are also available for various audiences. For engineers who plan to
apply this method, there is a series of two, one-week courses that cover the entire method. Each
of these courses includes extensive work on a realistic case study to provide as much "hands on"
experience as possible. A two-day Fundamentals course is also offered for first level managers
and related engineering roles such as hardware development and testing.

The method is supported by a variety of CASE tools, including BridgePoint® tools by Project
Technology.

The interested reader is encouraged to contact Project Technology, Inc. at (510) 567-0255 or visit
our web site at http://www.projtech.com for a complete and current listing of references and
courses.

References

[1] Sally Shlaer and Stephen J. Mellor, Object-Oriented Systems Analysis: Modeling the
World in Data, Prentice Hall, 1988.

[2] Sally Shlaer and Stephen J. Mellor, Object Lifecycles: Modeling the World in States,
Prentice Hall, 1992.

[3] Sally Shlaer and Stephen J. Mellor , Recursive Design, in Computer Language, March
1990, Volume 7, Number 3, Miller Freeman, Inc.

[4] Carma McClure, Software Automation in the 1990's and Beyond, in Proceedings of Fall
1989 CASE Symposium. Andover, MA: Digital Consulting, September 1989.

[5] Sally Shlaer, Stephen J. Mellor and Wayne Hywari, OODLE: A Language-Independent
Notation for Object-Oriented Design, in Journal of Object-Oriented Programming Focus
on Analysis and Design (special issue), SIGS Publications, 1991.

[6] Sally Shlaer, Stephen J. Mellor and Wayne Hywari, Real-Time Recursive Design, Course
Notes, Project Technology, Inc.

[7] Sally Shlaer, Stephen J. Mellor and Diana Grand, The Project Matrix: A Model for
Software Engineering Project Management, in Proceedings of the Third Software
Engineering Standards Application Workshop (SESAW III), IEEE, October 1984.

[8] Neil Lang, Shlaer-Mellor Object-Oriented Analysis Rules, Software Engineering Notes,
ACM Press, Volume 18, Number 1, January 1993.

[9] E. F. Moore, Gedanken-experiments on Sequential Machines, Automata Studies,
Princeton University Press, Princeton, N.J., 1956

 Copyright 1996 by Project Technology, Inc. - 13 -
All rights reserved.

